

FLENDER SIP Standard Industrial Planetary gear units

Catalog MD 31.1 · August 2012

FLENDER gear units

Answers for industry.

Related catalogs

FLENDER SIG Standard industrial gear unit E86060-K5730-A111-A1-7600	MD 30.1		PLANUREX 2 Planetary Gear Units	MD 20.3	HERE HERE HERE HERE HERE HERE HERE HERE
FLENDER couplings Standard Couplings	MD 10.1		E86060-K5720-A131-A2-6300 Girth Gear Units for Tube Mills	MD 20.4	
E86060-K5710-A111-A4-7600		And the state of t	E86060-K5720-A141-A1-7400		-
ARPEX Composite Couplings	MD 10.5		Paper Machine Drives	MD 20.5	EEE I
E86060-K5710-A151-A2-7400		And the section of th	E86060-K5720-A151-A1-6300		=
ARPEX High Performance Couplings	MD 10.9		Conveyor Drives	MD 20.6	43
E86060-K5710-A191-A2-7400		And the sectors in th	E86060-K5720-A161-A2-6300		
ARPEX Couplings Miniature	MD 10.10		Marine Reduction Gearboxes	MD 20.7	
E86060-K5710-A211-A2-6300			E86060-K5720-A171-A1-7400		
ARPEX Torque Limiters	MD 10.11		Products for Automation and Drives Interactive Catalog	CA 01	
E86060-K5710-A221-A2-7400		Particular and a second	E86060-D4001-B500-D1-7600		
Gear Units Sizes 3–22	MD 20.1		Industry Mall Information and ordering platform in the internet:		
E86060-K5720-A111-A2-6300			www.siemens.com/industrymall		
Gear Units Sizes 23–28	MD 20.11				
E86060-K5720-A211-A2-6300		All Market Dates (State			
Bucket Elevator Drives	MD 20.2				
E86060-K5720-A121-A2-6300		TO MARK Have been			

FLENDER SIP Standard Industrial Planetary gear units

Catalog MD 31.1 · August 2012

Dear customers, We are pleased to present you our new Catalog MD 31.1.

This catalog contains the current product range of FLENDER standard industrial planetary gear units (FLENDER SIP).

The new FLENDER SIP series offers a finely graded product range in a wide range of variants in the torque range from 10 000 to 80 000 Nm: cylindrical shaft with parallel key, hollow shaft with shrink disk, flanged shaft and hollow shaft with toothed profile – all with six gear stages in eight frame sizes. Taconite seals are also available as an option.

When drives with a finite life are in operation, it is often difficult to track those drives that have already reached their service life or even exceeded it. When you have to ask yourself again and again how long your drive will last and whether you will be able to get a replacement quickly enough in the event of failure, it becomes harder to forecast your own capabilities.

FLENDER SIP gear units are designed to be high-endurance, run very smoothly, and offer you reliability in every sense: Expect top performance, minimum lifecycle costs and maximum availability. Benefit from reliable gear units with a long service life that secure your own capabilities. Rely on FLENDER SIP and on its short delivery times.

We hope that you will often enjoy using catalog MD 31.1 as a reference for placing new orders and we look forward to receiving your queries about our products.

Any ideas and suggestions for improvement will be greatly appreciated.

Up-to-date information is available on the Internet at: www.siemens.com/sip

Best regards,

Michael Kupke Head BSS Standard Drives

Siemens Industriegetriebe GmbH

FLENDER gear units

Answers for industry.

SIEMENS

The products and systems described in this catalog are manufactured/distributed under application of a certified quality management system in accordance with DIN EN ISO 9001 (Certified Registration No. 01 100 000708). The certificate is recognized by all IQNet

countries.

FLENDER gear units FLENDER SIP Standard Industrial Planetary gear units

Catalog MD 31.1 · August 2012

Supersedes: Catalog MD 31.1 · 2011

© Siemens AG 2012

Introduction	1
Technical information	2
Selection of the gear units	3
Planetary gear units, horizontal mounting position	4
Gear unit combinations	5
Connection dimensions	6
Options for operation	7
Options for installation and attachment parts	8
Appendix	9

Printed on paper from sustainably managed forests and controlled sources.

www.pefc.org

Answers for industry.

Siemens Industry answers the challenges in the manufacturing and the process industry as well as in the building automation business. Our drive and automation solutions based on Totally Integrated Automation (TIA) and Totally Integrated Power (TIP) are employed in all kinds of industry. In the manufacturing and the process industry. In industrial as well as in functional buildings.

Siemens offers automation, drive, and low-voltage switching technology as well as industrial software from standard products up to entire industry solutions. The industry software enables our industry customers to optimize the entire value chain – from product design and development through manufacture and sales up to after-sales service. Our electrical and mechanical components offer integrated technologies for the entire drive train – from couplings to gear units, from motors to control and drive solutions for all engineering industries. Our technology platform TIP offers robust solutions for power distribution.

Check out the opportunities our automation and drive solutions provide. And discover how you can sustainably enhance your competitive edge with us.

Introduction

Notes

- 1/2 1/2 1/3

1/2

Characteristic features Summary of basic types General information

Introduction

Notes

Characteristic features

Overview

Reasonably constructed and economical solutions have proved their worth under a wide range of different operating conditions.

With the FLENDER SIP planetary gear units, Siemens offers an attractive price/performance ratio for low to mid torque ranges in well-proven FLENDER quality. The finely graded product series covers the torque range from 10 000 to 80 000 Nm.

The modular design enables many basic components to be standardized, including planetary stages, housing parts as well as drive-end and non-drive-end components. The complexity is reduced, and manufacturing is possible in economical batch sizes maintaining a high standard of quality.

FLENDER SIP gear units are cost-effective with worldwide availability and short delivery times. A further advantage: The specific requirements of a wide range of different industries are already implemented in the standard gear units.

FLENDER SIP: Comprehensive product range

Select from:

- 8 gear unit sizes
- 6 transmission stages
- 5 output shafts:
 - Hollow shaft for shrink disk;
 - · Hollow shaft with splines in accordance with DIN 5480;
 - Cylindrical shaft end with parallel key or
 - Cylindrical shaft end with splines
 - in accordance with DIN 5480
 - Flanged shaft
- Optional shaft seal with taconite

Applications

FLENDER SIP: A specialist in many fields

The FLENDER SIP planetary gear unit is tailored to those sectors of industry that require medium gear ratios in combination with a compact design.

FLENDER SIP gear units are reliable drive components for implementation in a wide range of industrial sectors.

Benefits

Advantages of FLENDER SIP

- Well-proven FLENDER quality with an attractive price/performance ratio
- Short delivery times
- High availability worldwide
- High-endurance gearing and large planetary bearings for a long service life
- Energy-efficient thanks to high levels of efficiency
- Easy to combine with Siemens geared motors
- Smooth running thanks to high transverse contact ratio in the gear teeth
- Local customer support all over the world

Design

Summary of basic types

1

Introduction Notes

1

Overview

To ensure careful selection of a suitable FLENDER SIP please note the information in this catalog.

In applications where the torque is variable but the speed constant, the gear unit can be designed on the basis of the so called equivalent torque, see Page 3/3.

For specific applications, such as sporadic operation of lockgate drives, a gear unit design which is finite-life fatigue-resistant can be sufficient.

We are pleased to be of assistance in checking that the selection is correct, and in carefully calculating the service life (on the basis of accurate application factors).

Types and transmission ratios

The table on Page 1/2 shows the possible standard types and the corresponding transmission ratio ranges.

Housing

The housing parts are constructed from high-quality casting materials and are of an optimized shape.

Gear teeth

The sun pinion and planet gears have straight teeth, are case hardened, and ground. Internal gears are highly tempered and pounded.

The gear teeth are designed to be **high-endurance** for the specified nominal torques in accordance with ISO 6336.

Bearings

Only suitably dimensioned roller bearings are used for the gear wheels and shafts.

Drive end

The shaft is designed as a cylindrical shaft end with a parallel key in accordance with DIN 6885-1 and suitable, for example, for the attachment of couplings.

It is also possible to use a geared motor of the MOTOX-N series at the drive end in combination, see Page 5/2.

Non-drive-end

Hollow shafts with shrink disk or hollow shafts with splines in accordance with DIN 5480 are available, as well as cylindrical shaft ends with parallel keys or with splines according to DIN 5480.

A flanged shaft is also available.

Installation options

For mounting on the driven machine, an output-side flange is available. With shaft-mounted gear units, a torque arm must be used. For torque arm, see Page 8/2. Installation is also possible using a gear housing base. For gear housing base, see Page 8/4.

Directions of rotation

The direction of rotation is determined by the front view of the output shaft d₂ (shaft end face).

Seals

The input shaft and output shaft are sealed **as standard** with radial shaft seals. For special purposes, refillable labyrinth seals (taconite) are available.

Centering

For details of centering at the shaft ends, see Page 6/2.

Greasing/oil quantities/mounting positions

The gear units use dip lubrication as standard. In case of dip lubrication, all parts to be lubricated are lying in the oil. Please refer to the Operating Instructions 7300 for details of the recommended lubricants.

The oil quantities depend on the oil level inspection devices. Further details can be found in the Operating Instructions 9300. Siemens reserves the right to make technical changes in the context of further technical development.

The gear units are designed for a horizontal mounting position. Please consult Siemens if a different mounting position is required.

Explanation of symbols used in the dimensioned drawings:

Symbol	Explanation
	Oil level plug
	Breather
	Oil filler
	Oil drain

Cooling

Cooling is performed via radiation and convection from the housing surface up to the thermal capacity, see Page 3/9.

Noise

The gear units are noise-optimized and can be evaluated in accordance with VDI 2159 with reference to the power rating.

The associated values are listed in Operating Instructions 9300.

Weights, dimensions

The specified weights are average values; illustrations and dimensions are not binding. Siemens reserves the right to make technical changes in the context of further technical development.

Operating conditions

The range of permissible ambient temperature is: -20 °C $\leq t_U \leq$ 50 °C (optionally -40 °C). Please consult Siemens in the case of operation at ambient temperatures below -40 °C. You must consult Siemens regarding environmental influences such as saltwater, salty air, corrosive substances, dust, mud, rockfall, extreme vibration or extreme shock.

Delivery

FLENDER SIP gear units are delivered preassembled and ready to install and in accordance with standards, without oil.

Optional torque arms and shrink disks are supplied loose. The gear housings are protected against corrosion and lacquered in the color RAL 5015.

1/3

Introduction

Notes

Technical information

- 2/2 2/2 Technical standards
 - Shaft misalignment
 - Mounting positions
 - Environmental conditions

2

- Selection of oil
- 2/2 2/2 2/2 2/2 2/2 Preservation Maintenance

Overview

Technical standards

The shafts are designed in accordance with DIN 743.

The bearing service life is calculated in accordance with ISO 281 taking into account the manufacturer's data.

The gearing is designed to be high-endurance in accordance with ISO 6336.

Shaft misalignment

Shaft misalignment is the result of displacement during assembly and operation and, where machines constructed with 2 radial bearings each are rigidly coupled, will cause high loads being placed on the bearings. Elastic deformation of base frame, foundation and machine housing will lead to shaft misalignment which cannot be prevented, even by precise alignment. Furthermore, because individual components of the drive train heat up differently during operation, heat expansion of the machine housings causes shaft misalignment.

Poorly aligned drives are often the cause of seal or rolling bearing failure. Alignment should be carried out by specialist personnel in accordance with the Siemens operating instructions.

Depending on the direction of the effective shaft misalignment a distinction is made between:

The expected shaft misalignment must be taken into account on selecting the connection between the components and the input shaft or output shaft. Guidelines and limits for compensation of shaft misalignment can be obtained from the manufacturer.

Mounting positions

FLENDER SIP gear units are available for horizontal installation. Other mounting positions are possible on request.

Environmental conditions

FLENDER SIP gear units are designed for operation in large halls, as well as outdoors.

The range of permissible ambient temperatures is: -20 °C $\leq t_U \leq$ 50 °C (optionally down to -40 °C). Operation of the gear units at ambient temperatures below -20 °C requires an oil that is suitable for low temperatures (PAO-T oil).

The screw connections must be tightened at ambient temperatures above -20 °C.

Selection of oil

FLENDER SIP gear units may be filled with oils from producers authorized by Siemens AG, the oil producer or supplier being responsible for the quality of the product. For the selection of oil grade and viscosity, the limits of application given in the table are to be taken into consideration.

A minimum operating viscosity of 25 cSt must be ensured.

Viscosity ISO-VG at 40 °C in mm ² /s (cSt)	Minimum temperature limit in °C for dip lubrication	
	Mineral oil Synthetic oil	
VG 220	-15	-25
VG 320	-12	-25
VG 460	-10	-25

Dip lubrication

In the case of dip lubrication, all parts to be lubricated are lying in the oil or are adequately splash lubricated.

In case of dip lubrication, the oil temperature must not drop below the pour point of the selected oil.

In the case of ambient temperatures outside the permissible range, you will need to consult Siemens.

Mineral oil of viscosity ISO-VG 220 is recommended as standard. For input speeds < 900 rpm oil of viscosity ISO-VG 460 is recommended in combination with a higher oil level.

Preservation

The internal preservation of FLENDER SIP gear units is dependent on the oil used.

For gear units with corrosion prevention, the following storage times are possible:

Standard preservation	Long-term preservation		
Up to 6 months	Up to 24 months ¹⁾		
	Up to 36 months ²⁾		

If the storage periods mentioned are exceeded, the anti-corrosive agent in the gear unit is to be renewed.

The externally protruding shaft ends and machined surfaces are also preserved.

Maintenance

Compliance with the conditions for operation and installation is essential. To prevent damage to the gear unit or failure of the drive, regular inspection and maintenance must be performed as specified in the operating instructions.

¹⁾ Only if mineral oil or synthetic oil on PAO basis is used.

²⁾ Only if synthetic oil on PG basis is used.

Selection of the gear units

3/2	Guidelines for selection
3/2	Constant mechanical power rating
3/3	Variable power rating
3/4	Key to symbols
3/5	Calculation example
3/6	Service factors
0,0	
3/8	Overview tables
3/8	Overview tables
3/8 3/8	Overview tables Actual ratio

Constant mechanical power rating

Overview

1. Determination of gear unit type and size

1.1.Find the transmission ratio

 $i_{\rm s} = \frac{n_1}{n_2}$

1.2.Determine the nominal power rating of the gear unit

 $P_{2\mathsf{N}} \geq P_2 \times f_1 \times f_2$

It is not necessary to consult Siemens if:

 $3.33 \times P_2 \ge P_{2N}$

1.3 Check for maximum torque e.g.: peak operating, starting or braking torque

$$P_{2N} = \frac{T_A \times n_1}{9550} \times f_2$$

Gear unit sizes and number of reduction stages are given in rating tables depending on ${\it i}_{\rm N}$ and ${\it P}_{\rm 2N}$

1.4 Check whether additional forces on the output shaft are permissible; it is essential to consult Siemens!

1.5 Check whether the actual ratio *i* as per tables on Page 3/8 is acceptable

2. Determination of oil supply: Horizontal mounting position

All parts to be lubricated are lying in the oil or are splash lubricated.

3. Determination of required thermal capacity P_{G}

Data required:

- Gear unit size
- Nominal ratio
- Ambient temperature

For the calculation below, the following has been assumed:

- Gear unit with dip lubrication
- Operating cycle per hour: 100 %
- Installation in a large hall (wind velocity ≥ 1.4 m/s)
- Gear unit with mineral oil ISO-VG220

Determination of the thermal capacities:

• Without auxiliary cooling $P_{\rm G} = P_{\rm GA} \times f_4$

- If $P_{\rm G} \ge P_2 \rightarrow$ gear unit is adequate.
- If $P_{\rm G} < P_2 \rightarrow$ it is necessary to consult Siemens.

Overview

For driven machines with constant speeds and variable power ratings the gear unit can be designed according to the equivalent power rating. For this a working cycle where phases I, II ... n require power P_{I} , P_{II} ... P_{n} and the respective power ratings operate for time fractions X_{I} , X_{II} ... X_{n} is taken as a basis. The equivalent power rating can be calculated from these specifications with the following formula:

$$P_{2eq} = \frac{6.6}{\sqrt{P_{1}^{6.6} \times \frac{X_{1}}{100} + P_{11}^{6.6} \times \frac{X_{11}}{100} + \dots P_{n}^{6.6} \times \frac{X_{n}}{100}}}$$

The size of the gear unit can then be determined analogously to points 1.1 ... 1.5 and 3.

The following applies:

$$P_{2N} \ge P_{2eq} \times f_1 \times f_2$$

Then, when $P_{\rm 2N}$ has been determined, the power and time fractions must be checked by applying the following requirements:

- The individual power fractions P_{I} , P_{II} ... P_{n} must be greater than 0.4 x P_{2N} .
- The individual power fractions $P_{\rm I}, P_{\rm II}...P_{\rm n}$ must not exceed 1.4 x $P_{\rm 2N}$.
- If power fractions P_I, P_{II}... P_n are greater than P_{2N}, the sum of time fractions X_I, X_{II}... X_n must not exceed 10%.

If any one of the three requirements is not met, P_{2eq} must be recalculated.

It must be borne in mind that a brief peak power rating not included in the calculation of P_{2eq} must not be greater than $P_{max} = 1.5 \times P_{2N}$.

In applications where the torque is variable but the speed constant, the gear unit can be designed on the basis of the so called equivalent torque.

For specific applications, a gear unit design which is finite-life fatigue-resistant can be sufficient. This includes, for example, sporadic operation (e.g. lockgate drives).

Example: Service classification

In the case of a service classification, you will need to consult Siemens

Key to symbols

Overview

Key to symbols

Description	Explanation	Chapter/Page
- -D	Operating cycle per hour in % (e. g. <i>E</i> _D = 80% per hour)	3/5, 3/9
I	Factor for driven machine	3/6
2	Factor for prime mover	3/7
3	Peak torque factor	3/7
Ļ	Thermal factor	3/7
3	Altitude factor	3/7
	Actual ratio	3/8
4	Nominal ratio	
;	Required ratio	
1	Input speed (rpm)	3/2
2	Output speed (rpm)	3/2
G	Required thermal capacity (kW)	3/2
GA	Thermal capacity (kW) for gear units without auxiliary cooling	3/9
2N	Nominal power rating of gear unit (kW), see rating tables	3/8
req.	Required power rating (kW)	
2	Power rating of driven machine (kW)	3/2
J	Ambient temperature (°C)	
A	Max. torque occurring on input shaft, e.g.: peak operating, starting or braking torque (Nm)	3/2
- 2N	Nominal output torque (kNm)	3/9
- 2	Torque (Nm) of the driven machine	
2eq	Equivalent power rating (kW)	3/3
P _I , P _{II} , P _n	Fractions of power rating (kW) obtained from service classification	3/3
$X_{\rm H}, X_{\rm H}, X_{\rm n}$	Fractions of time (%) obtained from service classification	3/3
	Line frequency (Hz)	
2req	Required design torque (Nm)	
ninSIP	Minimum ratio of planetary gear unit	5/2
naxSIP	Maximum ratio of planetary gear unit	5/2
minGM	Minimum output speed of the geared motor	5/2
maxGM	Maximum output speed of the geared motor	5/2
GM	Output speed of the geared motor	
ctSIP	Actual ratio of planetary gear unit	5/3
4	Tightening torque (Nm)	
Bk	Breakdown torque (Nm)	
N	Rated torque (Nm)	
nax	Maximum factor – maximum permissible overload of the drive	5/3
ßk	Breakdown factor of the electric motor (corresponds to breakdown/rated torque T_{Bk}/T_N)	5/3
ŝt	Starting factor of the electric motor (corresponds to starting/rated torque T_{St}/T_N)	5/3
SactSIP	Actual service factor of the selected planetary gear unit	5/3

Notes and legend for tables of thermal capacities

Dimensions in mm Weights in kg Oil quantities in liters (I) Fits to DIN ISO 286-2

Overview

Known criteria for the calculation example

Prime mover:

Electric motor, 6-pole:	$P_1 = 55 \text{ kW}$
 Motor speed: 	<i>n</i> ₁ = 1000 rpm
 Max. starting torque: 	<i>T</i> _A = 1332.5 Nm
Driven machine:	
Section mill:	$P_2 = 45 \text{ kW}$
Speed:	<i>n</i> ₂ = 32 rpm
• Duty:	24 h/day
 Starts per hour: 	15
Operating cycle per hour:	$E_{\rm D} = 40 \%$
 Ambient temperature: 	$t_{\rm U} = 50 \ ^{\circ}{\rm C}$
 Installation in a large hall 	
Altitude:	Sea level
<u>Gear unit design:</u>	
 Planetary gear unit 	
 Mounting position: 	horizontal
 Output shaft d₂: 	Hollow shaft with shrink disk
 Direction of rotation of 	

 Direction of rotation of output shaft d₂: counterclockwise, when viewing the shaft end face

The influence of additional forces on the shaft ends must be taken into account.

Required:

- Type of gear unit
- Gear unit size
- 1. Determination of gear unit type and size

1.1 Find the transmission ratio

$$i_{\rm s} = \frac{n_1}{n_2} = \frac{1000 \text{ rpm}}{32 \text{ rpm}} = 31.25 \rightarrow i_{\rm N} = 30 \text{ selected}$$

1.2 Determine the nominal power rating of the gear unit

$$P_{2N} \ge P_2 \times f_1 \times f_2 = 45 \text{ kW} \times 2.5 \times 1 = 112.5 \text{ kW}$$

From table, see Page 3/8 (nominal power rating P_{2N}) gear unit size FLENDER SIP 45 with P_{2N} = 127 kW selected. 1.3 Check the maximum loading

 P_{max} = 45 kW < 1.5 × 127 kW = 190.5 kW

No load stage exceeds the permissible maximum loading. 1.4 Check for over dimensioning

$$3.33 \times P_2 \ge P_{2N}$$
 $3.33 \times 45 \text{ kW} = 149.85 \text{ kW} > P_{2N}$

It is not necessary to consult Siemens.

1.5 Check the starting torque

$$P_{2N} \ge \frac{T_A \times n_1}{9550} \times f_3 = \frac{1332.5 \text{ Nm} \times 1000 \text{ rpm}}{9550} \times 1.26 = 175.8 \text{ kW}$$
$$P_{2N} = 127 \text{ kW} < 175.8 \text{ kW}$$

It is necessary to limit the motor torque on starting.

1.6 Check the thermal capacity $P_{\rm G}^{(1)}$

Check whether $P_{\rm G} \ge P_2$

 $P_{\rm G} = P_{\rm GA} \times f_4 \times f_6 = 60 \text{ kW} \times 0.74 \times 1 = 44.4 \text{ kW}$

Due to insufficient thermal capacity, another gear unit size, in this case FLENDER SIP 50, must be selected with:

*P*_{GA} = 71 kW:

$$P_{G} = P_{GA} \times f_{4} \times f_{6} = 71 \text{ kW} \times 0.74 \times 1 = 52.54 \text{ kW}$$

In the following cases, the values for P_{GA} must be taken from the table for increased oil level on Page 3/9: n₁ < 900 rpm; fitted with Pt100 resistance thermometer or installed according to ATEX 95.

Service factors

Overview

Factor for driven machines f₁

Driven machines	Effective operating period under load in hours		eriod
	≤ 0.5	> 0.5 – 10	> 10
Waste water treatment	20.0	2 0.0 - 10	> 10
Thickeners (central drive)	_	_	1.2
Filter presses	1.0	1.3	1.5
Flocculation apparatus	0.8	1.0	1.3
Aerators	0.0	1.8	2.0
Raking equipment	1.0	1.2	1.3
Combined longitudinal and rotary	1.0	1.3	1.5
rakes	1.0	1.5	1.5
 Pre-thickeners 	-	1.1	1.3
 Screw pumps 	-	1.3	1.5
 Water turbines 	-	-	2.0
Pumps			
 Centrifugal pumps 	1.0	1.2	1.3
 Positive-displacement pumps 	1.0		1.0
- 1 piston - > 1 piston	1.3 1.2	1.4 1.4	1.8 1.5
Dredgers	1.2		1.0
Bucket conveyors	_	1.6	1.6
Dumping devices	_	1.3	1.5
Caterpillar traveling gears	1.2	1.6	1.8
Bucket wheel excavators			
- as pick-up	-	1.7	1.7
- for primitive material	-	2.2	2.2
• Cutter heads	-	2.2	2.2
• Slewing gears ¹⁾	-	1.4	1.8
Plate bending machines ¹⁾	-	1.0	1.0
Chemical Industry Extruders			1.6
Dough mills	_	- 1.8	1.8
Rubber calenders	_	1.5	1.5
Cooling drums		1.3	1.4
Mixers for		1.5	1.4
- uniform media	1.0	1.3	1.4
- non-uniform media	1.4	1.6	1.7
Agitators for media with			
- uniform density	1.0	1.3	1.5
 non-uniform density non-uniform gas absorption 	1.2 1.4	1.4 1.6	1.6 1.8
Toasters	1.4	1.3	1.5
Centrifuges	1.0	1.2	1.3
Metal working mills	1.0	1.2	1.0
Plate tilters	1.0	1.0	1.2
Ingot pushers	1.0	1.2	1.2
Winding machines	_	1.6	1.6
Cooling bed transfer frames	_	1.5	1.5
Roller straighteners	_	1.6	1.6
Roller tables			
- continuous	_	1.5	1.5
 intermittent Reversing tube mills 	_	2.0 1.8	2.0 1.8
		1.0	1.0
<u>Shears</u> - continuous 1)		1.5	1.5
- crank type ¹⁾	_ 1.0	1.0	1.0
Continuous casting drivers ¹⁾	-	1.4	1.4
5			

Design for pow	er rating of	f driven mac	hine P ₂ :
----------------	--------------	--------------	-----------------------

¹⁾ Designed power corresponding to max. torque

 $^{\mbox{2)}}$ Load can be exactly classified, for instance, according to F

³⁾ A check for thermal capacity is absolutely essential

		 Belt conveyors ≥ 150 kw 	1.1	1.3
	1.3	• Goods lifts ¹⁾	-	1.2
	1.8	 Passenger lifts ¹⁾ 	-	1.5
	1.5	 Apron conveyors 	-	1.2
		 Escalators 	1.0	1.2
	1.6	 Railway vehicles 	-	1.5
	1.5	Frequency converters	-	1.8
	1.8	Reciprocating compressors	-	1.8
		Cranes ²⁾		
	1.7	 Slewing gears ¹⁾ 	1.0	1.4
	2.2	 Luffing gears 	1.0	1.1
	2.2	 Traveling gears 	1.1	1.6
	1.8	 Hoisting gears 	1.0	1.1
	1.0	Derricking jib cranes	1.0	1.2
		Cooling towers		
	1.6	 Cooling tower fans 	_	_
	1.8	Blowers (axial and radial)	_	1.4
	1.5	Food industry		
	1.4	Cane sugar production		
		Cane knives ¹⁾	_	_
	1.4	Cane mills	_	_
	1.7	Beet sugar production		
		Beet cossettes macerators	_	_
	1.5 1.6	Extraction plants, mechanical	-	-
	1.8	refrigerators, cooking appliances		
	1.5	 Beet washers, beet cutters 	-	_
	1.3	Paper machines		
		 of all kinds ³⁾ 	_	1.8
	1.2	 Pulper drives (on request) 		
	1.2	Centrifugal compressors	-	1.4
	1.6	Cableways		
	1.5	Material ropeways	_	1.3
	1.6	To-and-fro system aerial ropeways	_	1.6
		• T-bar lifts	_	1.3
	1.5	 Continuous ropeways 	_	1.4
	2.0	Cement industry		
	1.8	Concrete mixers	_	1.5
		• Breakers ¹⁾	_	1.2
	1.5 1.0	 Rotary kilns 	_	_
		• Tube mills	_	_
	1.4	Separators	_	1.6
		Roll crushers	_	_
		Note:		
FEM	1001	The listed load parameters are em their application is that the machine correspond to generally accepted tions. In case of deviations from st consult Siemens. For driven machi table, please refer to us.	ery and eq design ar andard co	uipr nd Ic ondit

Driven machines	Effective of	perating pe	eriod
	under load	d in hours > 0.5 – 10	> 10
Rolls	2 0.0	2 0.0 10	2 10
- Reversing blooming mills	_	2.5	2.5
 Reversing slabbing mills 	-	2.5	2.5
- Reversing wire mills	-	1.8	1.8
 Reversing sheet mills Reversing plate mills 	_	2.0 1.8	2.0 1.8
Roll adjustment drives	0.9	1.0	-
Conveyors	0.5	1.0	_
Bucket conveyors	_	1.4	1.5
Hauling winches	1.4	1.4	1.6
Hoists	1.4	1.5	1.8
	- 1.0		1.3
 Belt conveyors ≤ 150 kW Belt conveyors ≥ 150 kW 		1.2	
• Belt conveyors \geq 150 kW	1.1	1.3	1.4
• Goods lifts ¹⁾	-	1.2	1.5
Passenger lifts ¹⁾	-	1.5	1.8
 Apron conveyors 	-	1.2	1.5
 Escalators 	1.0	1.2	1.4
 Railway vehicles 	-	1.5	-
Frequency converters	-	1.8	2.0
Reciprocating compressors	-	1.8	1.9
Cranes ²⁾			
 Slewing gears ¹⁾ 	1.0	1.4	1.8
 Luffing gears 	1.0	1.1	1.4
 Traveling gears 	1.1	1.6	2.0
Hoisting gears	1.0	1.1	1.4
Derricking jib cranes	1.0	1.2	1.6
Cooling towers			
Cooling tower fans	_	-	2.0
Blowers (axial and radial)	_	1.4	1.5
Food industry			
Cane sugar production			
Cane knives ¹⁾	_	_	1.7
Cane mills	_	_	1.7
Beet sugar production			
Beet cossettes macerators	_	_	1.2
Extraction plants, mechanical	-	-	1.4
refrigerators, cooking appliances			
Beet washers, beet cutters	_	-	1.5
Paper machines			
• of all kinds ³⁾	_	1.8	2.0
 Pulper drives (on request) 			
Centrifugal compressors	_	1.4	1.5
Cableways			
 Material ropeways 	_	1.3	1.4
• To-and-fro system aerial ropeways	_	1.6	1.8
• T-bar lifts	_	1.3	1.4
Continuous ropeways	_	1.4	1.6
Cement industry			
Concrete mixers	_	1.5	1.5
• Breakers ¹⁾	_	1.2	1.4
Rotary kilns	_	_	2.0
Tube mills	_	_	2.0
Separators	_	1.6	1.6
Roll crushers	_		2.0
		-	2.0

. Prerequisite for oment mentioned load specifica-ditions, please e not listed in this

Service factors

Overview (continued)

Factor i	for prime	mover f	2
----------	-----------	---------	---

Machine	Factor for prime mover f_2
Electric motors, hydraulic motors, turbines	1.0
Piston engines 4 – 6 cylinders, cyclic variation 1 : 100 to 1 : 200	1.25
Piston engines 1 – 3 cylinders cyclic variation 1 : 100	1.5

Peak torque factor f₃

Direction of load						Peak torque factor f_3							
	1 – 5	6 - 30	31 - 100	> 100									
Steady direction of load	0.67	0.86	0.93	1.13									
Alternating direction of load	0.93	1.26	1.46	1.66									

Thermal factor f₄

(Gear unit without additional cooling)

Ambient temperature t_U	Operati	ng cycle	per hou	r (<i>E</i> _D)							
in °C	in %										
	100	80	60	40	20						
10	1.14	1.20	1.32	1.54	2.04						
20	1.00	1.06	1.16	1.35	1.79						
30	0.87	0.93	1.00	1.18	1.56						
40	0.71	0.75	0.82	0.96	1.27						
50	0.55	0.58	0.64	0.74	0.98						

Altitude factor f₆

Factor	Altitude	in meter	s above	sea leve	el
	up to 1000	up to 2000	up to 3000	up to 4000	up to 5000
f ₆	1.0	0.95	0.90	0.80	

Selection of the gear units Overview tables

Actual ratio *i* Nominal power ratings *P*_{2N} (kW)

Technical data

Actual ratio i

Nominal ratio	Gear unit	sizes						
i _N	30	35	37	40	45	50	55	60
25	25.07	25.07	25.07	25.07	25.07	25.07	25.07	25.07
27	27.26	27.26	27.26	27.26	27.26	27.26	27.26	27.26
30	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00
33.5	33.52	33.52	33.52	33.52	33.52	33.52	33.52	33.52
38	38.22	38.22	38.22	38.22	38.22	38.22	38.22	38.22
45	44.80	44.80	44.80	44.80	44.80	44.80	44.80	44.80

Nominal power ratings P_{2N} (kW)

Nominal ratio	Input speed	Output speed	Gear unit s	izes						
i _N	n ₁	n ₂	30	35	37	40	45	50	55	60
	rpm	rpm								
25	1800	72	78	117	157	196	274	352	509	626
	1500	60	65	98	131	163	228	294	424	522
	1200	48	52	78	104	131	183	235	339	418
	1000	40	44	65	87	109	152	196	283	348
27	1800	66	72	108	144	180	252	324	468	576
	1500	55	60	90	120	150	210	270	390	480
	1200	44	48	72	96	120	168	216	312	384
	1000	37	40	60	80	100	140	180	260	320
30	1800	60	65	98	131	164	229	294	425	523
	1500	50	55	82	109	136	191	245	354	436
	1200	40	44	65	87	109	153	196	284	349
	1000	33	36	55	73	91	127	164	236	291
33.5	1800	54	59	88	117	146	205	263	381	468
	1500	45	49	73	98	122	171	220	317	390
	1200	36	39	59	78	98	137	176	254	312
	1000	30	33	49	65	81	114	146	211	260
38	1800	85	51	77	103	128	180	231	334	411
	1500	47	43	64	86	107	150	193	278	342
	1200	31	34	51	68	86	120	154	223	274
	1000	26	29	43	57	71	100	128	185	228
45	1800	40	44	66	88	110	153	197	285	351
	1500	33	37	55	73	91	128	164	237	292
	1200	27	29	44	58	73	102	131	190	234
	1000	22	24	37	49	61	85	110	158	195

Selection of the gear units Overview tables

Nominal output torques T_{2N} (kNm) Thermal capacity P_{GA} (kW) n₁ \leq 1800 rpm

Technical data (continued)

Nominal output torques T_{2N} (kNm)

Nominal ratio	Gear unit	Gear unit sizes												
i _N	30	35	37	40	45	50	55	60						
25	10	15	20	25	35	45	65	80						
27	10	15	20	25	35	45	65	80						
30	10	15	20	25	35	45	65	80						
33.5	10	15	20	25	35	45	65	80						
38	10	15	20	25	35	45	65	80						
45	10	15	20	25	35	45	65	80						

Thermal capacity P_{GA} (kW), $n_1 \leq 1800$ rpm, normal oil level

Nominal ratio	Gear unit	Gear unit sizes												
i _N	30	35	37	40	45	50	55	60						
25	25	37	41	45	60	71	74	77						
27	25	37	41	45	60	71	74	77						
30	25	37	41	45	60	71	74	77						
33.5	25	37	41	45	60	71	74	77						
38	25	37	41	45	60	71	74	77						
45	25	37	41	45	60	71	74	77						

Thermal capacity P_{GA} (kW), $n_1 \le 1800$ rpm, increased oil level ¹⁾

Nominal ratio	Gear uni	Gear unit sizes												
i _N	30	35	37	40	45	50	55	60						
25	20	30	33	36	48	57	59	62						
27	20	30	33	36	48	57	59	62						
30	20	30	33	36	48	57	59	62						
33.5	20	30	33	36	48	57	59	62						
38	20	30	33	36	48	57	59	62						
45	20	30	33	36	48	57	59	62						

The values are applicable for:

• Operating cycle per hour: 100 %

• Installation in a large hall

• Ambient temperature $t_{\rm U}$ = 20 °C

 $^{1)}$ Values apply for the following applications: Installation according to ATEX 95, $n_{\rm 1}$ < 900 rpm; gear unit combination, oil temperature monitoring with Pt100 resistance thermometers

³

Selection of the gear units

Notes

Planetary gear units, horizontal mounting position

4/2Selection and ordering data
Gear unit dimensions4/2Two-stage gear units, coaxial

Siemens MD 31.1 · August 2012

Gear unit dimensions Two-stage gear units, coaxial

Selection and ordering data

	Dimensio	ons in mn	n											
O2RC Gear unit sizes	Shaft end drive end		Flange											
	Ød ₁ ¹⁾	l ₁	С	Ø d _a	Ød ₄ f7	Ød ₆	G ₁	Øk ₁	Ø k ₂	z	Øs ₁	Øs ₂	n	t
30	40	70	17	375	290	130 K7	354	335	165	8	17.5	M10	16	22.5°
35	40	70	17	425	340	130 K7	373	385	165	8	17.5	M10	20	18°
37	45	80	19	450	370	180 K7	393	410	215	8	17.5	M12	24	15°
40	45	80	19	480	390	180 K7	399	435	215	8	22	M12	18	20°
45	50	100	19	540	445	230 K7	428	490	265	8	22	M12	20	18°
50	50	100	24	585	495	230 K7	450	540	265	8	22	M12	24	15°
55	60	110	29	650	535	250 M7	516	595	300	8	26	M16	24	15°
60	60	110	34	695	585	250 M7	535	640	300	8	26	M16	24	15°

¹⁾ Shaft diameter $d_1 < 100 \rightarrow$ tolerance m6 For shaft end d_1 with parallel key in accordance with DIN 6885-1 and central holes, see Page 6/2.

Gear unit dimensions Two-stage gear units, coaxial

Selection and ordering data (continued)

Output

Output																					
Data posi		ne Order N	NO.						1 to 6	7		8	9	10	11	12		13	14	15	16
Order No									2LP069	·	- (0	Е	·	. •	0	-	0	1	÷.,	0
Gear unit sizes		sions in m	IM				Oil quantity	Weight							for 7	7th, 1	0th, ⁻	11th,	oleme 14th a s 4/4	and	
	G_5	Ø d _w H7	7				1	kg ¹⁾	Hollow s	haft	for sh	rink	(dis	sk							
30	133	90					1.80	100								C					
35	138	100					2.00	130	-						4	G ₅					
37	149	110					2.70	167						ر							
40	152	120					3.00	186				Γ	1					>			
45	166	130					4.80	268			-			•	-+++	<u></u>		° ₽			
50	167	140					5.50	331			•					HJ					
55	185	165					8.00	480						<u> </u>							
60	207	180					8.40	576				G_N	1030_	XX_001	10						
	G ₄	Ø d ₂ H7	l ₂	b ₁	b ₂	R	I	kg ²⁾	Hollow s	haft	with s	plir	ies	in ac	core	danc	e wil	th DI	N 548	80	
30	84	92	81	55	20	1.5	1.80	93								_					
35	82	102	86	60	20	1.5	2.00	118	_						(G ₄	C = =		haft		
37	101	112	102	70	25	1.5	2.70	153										irbox s	nan		
40	104	122	107	75	25	1.5	3.00	166				Γ				h		DI	N 548	0	
45	117	132	118	80	30	2.5	4.80	242			- E	<u> </u>	+	•	+	-		R	Ø d2		
50	114	142	123	85	30	2.5	5.50	303	_			L				Щ	b ₁		2		
55	130	172	144	100	35	2.5	8.00	438	_			G	L	EN_001	11		->	b ₂	2		
60	136	182	155	110	35	2.5	8.40	516				-									
	G ₂	Ø d ₂ n6	l ₂				1	kg ²⁾	Cylindric	al sl	naft en	nd v	vith	para	llel	key					
30	234	110	165				1.80	114									G_2				
35	255	120	185				2.00	149						_							
37	278	130	205				2.70	193				_	-			, 	I ₂	-			
40	289	140	215				3.00	212			r the	[Ŷ		Ø d2		
45	314	150	235				4.80	301			- P						÷		Ø		
50	334	160	255				5.50	391	_			L		_		ſ					
55	371	200	290				8.00	556	_							/D30_X	x 0011:	2			
60	378	220	295				8.40	664													
	G ₂	G ₇	Spline DIN 5₄	s in acco 180	ordance		I	kg ³⁾	Cylindrio DIN 5480	al sh)	naft en	nd v	vith	spliı	nes i	in ac	cord	lance	with		
30	131.5	119.5	W110	× 3 × 35	×8h		1.80	111								G ₂					
35	140.5	129.5	W120	× 3 × 38	×8h		2.00	145						_	_[]						
37	148.0	137	W130	× 3 × 42	×8h		2.70	187				_	-	,		1		1 5480			
40	151.5	140.5	W140	× 3 × 45	×8h		3.00	205								h					
45	164.0	153	W150	× 3 × 48	×8h		4.80	292			₽¶					UTI					
50	165.0	154	W160	× 3 × 52	×8h		5.50	373				L	L	_		1 -f					
55	164.0	153	W200	× 3 × 65	×8h		8.00	534				G_M	ID30_E	EN_001	13	G7	∕-Fla	inge			
60	177.5	166.5	W220	× 5 × 42	×8h		8.40	638							4	67					

²⁾ Weight without oil

³⁾ Weight with flange and without oil

Two-stage gear units, coaxial

Selection and ordering data (continued)

Order No. supplement 7th, 10th, 11th and 14th position

				_	_								
		Data position of the Order No.	1 to 6				10				13		
		Order No.	2LP069		- 0	E			0	-	0		
Output shaft design													
Hollow shaft for shrink d				0									
	s in accordance with DIN 5480			1									
Cylindrical shaft end wit				2									
	h splines in accordance with DIN 5480			3									
Flanged shaft				4									
Gear unit size						_							
30							A						
35							В						
37							С						
40							D						
45							Ε						
50							F						
55							G						
60							Η						
Sealing													
Seal on input shaft	Seal on output shaft												
WDR	WDR							0					
WDR	Taconite							1					
Taconite	WDR							2					
Taconite	Taconite							3					
Nominal gear ratio <i>i</i> _N													
25												A	
27												в	
30												С	
33.5												D	
38												Е	
45												F	

Ordering information

When ordering the shrink disk, -Z should be added to the order number.

Data position of the Order No.	1 to 6 7 8 9 10 11 12 13 14 15 16 Order code
Order No.	2LP069 0Z
Supplied without shrink disk	МОО
Supplied with shrink disk	M01
Supplied with ATEX protective cover for shrink disk	M02

Two-stage gear units, coaxial

For motor size	Motor power	Rated speed	Data position of the Order No.	1 to 6	1	8	9 10	11 12	-	13 14	15 1	6 Order co
	P_{M}	n _M										
	kW	rpm										
			Order No.	2LP069	÷ -	0	Ε.	. 0	-	0.)
4-pole, 50 Hz												
IEC 63M	0.18	1395									Α	-
IEC 71M	0.37	1384									в	-
IEC 80M	0.75	1399									С	-
IEC 90S	1.1	1440									D	-
IEC 90L	1.5	1440									Е	-
IEC 100L	3	1420									F	-
IEC 112M	4	1440									G	-
IEC 132S	5.5	1455									н	-
IEC 132M	7.5	1455									J	-
EC 160M	11	1460									к	-
EC 160L	15	1460									L	-
EC 180M	18.5	1465									М	-
IEC 180L	22	1465									Ν	-
IEC 200L	30	1465									Р	_
IEC 225S	37	1475									Q	_
EC 225M	45	1475								-	R	-
EC 250M	55	1480									s	_
EC 280S	75	1485									т	-
EC 280M	90	1485									U	_
EC 315S	110	1488									V	_
EC 315M	132	1488									w	_
4-pole, 60 Hz	-											
EC 63M	0.21	1705									z	Q1A
IEC 71M	0.43	1725									Z	Q1B
EC 80M	0.86	1725									Z	Q1C
IEC 90S	1.3	1755									z	Q1D
IEC 90L	1.75	1775									z	Q1E
IEC 100L	3.45	1704									z	Q1F
IEC 112M	4.6	1728									z	Q1G
IEC 132S	6.3	1726									Z	Q1H
EC 1323	8.6	1746									Z	Q1J
IEC 160M	12.6	1740									Z	Q1K
IEC 160M	17.3	1752									Z	Q1L
IEC 180L	21.3	1752									Z	Q1M
IEC 180M	21.3	1758									Z	Q1M Q1N
EC 180L EC 200L	34.5	1758									Z	Q1P
EC 200L EC 225S												
EC 2255 EC 225M	42.5	1770									Z	Q1Q
	52	1770									Z	Q1R
EC 250M	63	1776									Z	Q1S
EC 280S	86	1782									Z	Q1T
EC 280M	104	1782									z	Q1U
EC 315S	127	1786									z	Q1V
EC 315M	152	1786 Y20 ¹⁾									z	Q1W

Selection and ordering data (continued)

 $^{1)}\,$ In addition to order code Y23 and Y20, plain text is required for $P_{\rm M}$ or $n_{\rm M}.$

Notes

Gear unit combinations

FLENDER SIP with MOTOX-N

Overview

5/2

- Benefits
- 5/2 5/2 5/2 5/2 5/4 Design
 - Configuration
 - Selection and ordering data

Gear unit combinations FLENDER SIP with MOTOX-N

Overview

The planetary gear units of the FLENDER SIP series can be combined with parallel shaft and bevel helical geared motors of the MOTOX-N series.

Benefits

- Combination of the two series as standard
- Large selection of motors, such as asynchronous and servo motors
- Large range of ratios
- Perpendicular as well as parallel arrangement
- Utilization of the MOTOX-N product spectrum in the context of the Siemens DriveTrain
- Utilization of options, such as brakes, encoders and sensors

- O2.. FLENDER SIP planetary gear unit
- KAF. Bevel helical geared motor MOTOX-N
- F..AF. Parallel shaft geared motor MOTOX-N

Design

Standard assignment

02	KAF/FAF	Nominal size flange geared motor	Nominal diameter of hollow shaft geared motor
30	48	A200	40
35	48	A200	40
37	68	A250	45
40	68	A250	45
45	88	A300	50
50	88	A300	50
55	108	A350	60
60	108	A350	60

The gear units of the MOTOX-N series must be the flangemounted version with hollow shaft and parallel keyway.

Configuration

Design example for belt conveyor

Prime mover:

- Electric motor, 4-pole: P₁ = 3 kW
- Line frequency: f = 50 Hz
- Driven machine:
- Speed: *n*₂ = 0.9 rpm
- Service factor: $f_1 = Page 3/6$

Gear unit design:

- Mounting position: Horizontal
- Shaft arrangement: Orthogonal
- 1. Determination of the SIP gear unit size

$$T_2 = \frac{P_1 \times 9550}{n_2} = \frac{3 \text{ kW} \times 9550}{0.9 \text{ rpm}}$$
$$T_2 = 31833.33 \text{ Nm}$$

$$T_{2reg} = T_2 \times f_1 = 31833.33 \text{ Nm} \times 1.3$$

 $T_{2N} \ge T_{2req}$

45000 Nm ≥ 41383.33 Nm

Selected gear unit size from selection table on Page 3/9: FLENDER SIP 50.

- 2. Determination of the associated geared motor
- 2.1 Calculation of the values

 $n_{\rm minGM} = n_2 \times i_{\rm minSIP} = 0.9 \text{ rpm} \times 25$

 $n_{\rm minGM}$ = 22.5 rpm

 $n_{\text{maxGM}} = n_2 \times i_{\text{maxSIP}} = 0.9 \text{ rpm} \times 45$

 n_{maxGM} = 40.5 rpm

Possible speed range for geared motor: 22.5 rpm... 40.5 rpm

- Values for selecting the geared motor:
- Electric motor, 4-pole: P₁ = 3 kW
- Line frequency: f = 50 Hz
- Output speed: n_{GM} = 22.5 rpm... 40.5 rpm
- Service factor: $f_1 \ge 1.3$

Gear unit combinations FLENDER SIP with MOTOX-N

Configuration (continued)

2.2 Selection of the geared motor

Set filter in accordance with the actual values and select geared motor with regard to the shaft arrangement.

Note:

The standard assignment as shown in the table on Page 5/2 must be complied with. Other combinations are available on request.

The thermal capacity of the geared motor must be checked.

Selection: KAF 88

Possible speeds for MOTOX-N: 35, 29, 25

2.3 Selection of speed of the geared motor

$$n_2 = \frac{n_{\rm GM}}{i_{\rm actSIP}}$$

For table, see Page 3/8.

Due to the wide variety of possible speeds for MOTOX-N, the use of a matrix is recommended for the purposes of comparing all the combinations.

Output speed of geared motor n _{GM}	Actual rat	io <i>i</i> planet	ary gear u	ınit i _{actSIP}		
	25.07	27.26	30.00	33.52	38.22	44.80
35	1.40	1.28	1.17	1.04	0.92	0.78
29	1.16	1.06	0.97	0.87	0.76	0.65
25	1.00	0.92	0.83	0.75	0.65	0.56

Selected geared motor:

- K88-LA100ZLD4E with:
- $-P_1 = 3 \text{ kW}$
- n_{GM} = 35 rpm

2.4 Check for overload

The peak loads resulting from the starting procedure must not exceed the maximum factor for the gear unit combination f_{max} . If this is the case, it is important to implement appropriate limiting using a frequency converter, or similar.

The peak factors $f_{\rm Bk}/f_{\rm St}$ must be taken from the associated motor data sheet of Catalog D 87.1, MOTOX Geared Motors. The highest value must be used in each case.

 $f_{\max} \ge f_{Bk}$ or f_{St}

2.1 ≤ 3.9

The breakdown torque or starting torque of the electric motor must therefore be limited to maximum 2.1 times, using a frequency converter for example.

2.5 Configuration of geared motor with mandatory selection of options:

1. Flange mounting type – design FAF.. or K..AF..

- 2. Output shaft type hollow shaft
- 3. Diameter of output shaft to match d_1 on Page 4/2 or 4/3

Gear unit combinations

Gear unit combinations FLENDER SIP with MOTOX-N

Selection and ordering data

Note: Drawing with hollow shaft for shrink disk. For other output shaft variants, see Page 5/5.

Data position of	the Order			1 to 6	7		8	9	10	11	12		13	14	15	16
Order No.:				2LP069		-	0	F			0	-			Α	
O2RR	KAFsize	Dimensio	ns in mm								rder No					
Gear unit sizes		SIP	KAF							14th a	and 16t	h pos	ition, se	ee Pag	es 5/6	to 5/7
		l ₁	а	a ₂	a ₄		l ₃									
30	48	332	432	78	186		520		Α							
35	48	351	451	78	186		539		В							
37	68	373	486	89	220		593		С	Γ						
40	68	379	492	89	220		599		D							
45	88	394	536	110	262		671		Е							
50	88	416	558	110	262		693		F							
55	108	483	639	136	328		799		G							
60	108	502	658	136	328		818		н							

Data position of	the Order			1 to 6	7		8	9	10	11	12		13	14	15	16
Order No.:				2LP069		-	0	F			1	-			Α	
O2RP	FAFsize	Dimension	ns in mm								der No					
Gear unit sizes		SIP	FAF							14th a	and 16	h posi	tion, se	e Pag	es 5/6	to 5/7
		l ₁	а	a ₂	l ₃		I_5									
30	48	332	150	93	533		491		Α							
35	48	351	150	93	552		510		В							
37	68	373	180	111	606		551		С							
40	68	379	180	111	612		557		D							
45	88	394	230	132	683		621		Е							
50	88	416	230	132	706		643		F							
55	108	483	280	160	805		739		G							
60	108	502	280	160	824		758		н							

The motor dimensions can be found in Catalog D 87.1, MOTOX Geared Motors. The overall dimensions of the SIP MOTOX-N combination are obtained on the basis of these values.

Gear unit combinations FLENDER SIP with MOTOX-N

Selection and ordering data (continued)

0		÷	~		÷
υ	u	L	ρ	u	ι

Data posi	tion of th	e Order N	٧o.						1 to 6	7	8	9	10	11	12	13	14	15	16
Order No									2LP069		- 0	F				0			0
Gear unit sizes		sions in m	in mm A H7 A H7				Oil quantity	Weight single gear unit						for 7 and	order No 'th, 11th, 15th po Pages 5	, 12th sition,	, 13th		h
	G ₅	Ø d _w H7	7				1	kg ¹⁾	Hollow s	haft fo	or shrii	nk di	sk						
30	133	90					4.00	100						0					
35	138	100					4.30	130	_				4	G ₅	1				
37	149	110					5.50	167				(-11						
40	152	120					6.00	186	_)		\mathbf{H}	>				
45	166	130					8.60	268	_			-{-	+ -	₩Į-	M dw				
50	167	140					11.20	331	_					Ю	<u> </u>				
55	185	165					15.00	480			G_MD3		00115						
60	207	180					16.70	576			0_11105	0_///_(0110						
	G ₄	Ø d ₂ H7	l ₂	b ₁	b ₂	R	1	kg ²⁾	Hollow s	haft w	ith spl	ines	in ac	cord	lance w	ith Dl	N 54	30	
30	84	92	81	55	20	1.5	4.00	93						c.					
35	82	102	86	60	20	1.5	4.30	118					ľ	G ₄					
37	101	112	102	70	25	1.5	5.50	153				/	-1		Gearl	oox sha			
40	104	122	107	75	25	1.5	6.00	166				$\langle \rangle$					5480 ∾		
45	117	132	118	80	30	2.5	8.60	242				-				R	2 Z		
50	114	142	123	85	30	2.5	11.20	303						μ	b ₁				
55	130	172	144	100	35	2.5	15.00	438			G MD	0_EN_0	00116		-	b ₂			
60	136	182	155	110	35	2.5	16.70	516											
	G ₂	Ø d ₂ n6	I_2				1	kg ²⁾	Cylindrid	al sha	aft end	with	para	allel I	key				
30	234	110	165				4.00	114	_						G ₂				
35	255	120					4.30	149	_				d'	•					
37	278	130					5.50	193	_			(l ₂				
40	289	140					6.00	212	_						4	A _N			
45	314	150					8.60	301	_			-(-	+	He		Ø d2			
50	334	160					11.20	391				\rangle							
55	371	200					15.00	556			G_MD3	0_XX_0	00117						
60	378	220	_				16.70	664											
	G ₂	G ₇			ordance		1	kg ³⁾	Cylindric DIN 5480	al sha)	ift end	with	spli	nes i	n accor	dance	e with	ו	
30	131.5	119.5		× 3 × 35	×8h		4.00	111						0					
35	140.5	129.5	W120	× 3 × 38	×8h		4.30	145	-				Ļ	- G ₂					
37	148	137		× 3 × 42			5.50	187	-			/			_DIN 54	80			
40	151.5	140.5	W140	× 3 × 45	×8h		6.00	205	-							50			
45	164	153	W150	× 3 × 48	×8h		8.60	292	-			\rightarrow	—-H		l,				
50	165	154	W160	× 3 × 52	×8h		11.20	373	-			\langle		JFL.	#				
55	164	153	W200	× 3 × 65	×8h		15.00	534	-		G_MD3		00118	ľ	Flange	Э			
60	177.5	166.5	W220	× 5 × 42	×8h		16.70	638	-		G_101D3			G ₇					

5

2) Weight without oil

³⁾ Weight with flange and without oil

Gear unit combinations FLENDER SIP with MOTOX-N

Selection and ordering data

Order No. supplement 7th, 11th, 12th and 14th position

	Data	a position of the Order No.	1 to 6	7	8	9 10 1	1 12	13 14 15 1
	Orde	er No.	2LP069	-	0	F . 🗖		🔳 A
Output shaft design								
Hollow shaft for shrink disk				0				
Hollow shaft with splines in accorda	nce with DIN 5480			1				
Cylindrical shaft end with parallel ke	У			2				
Cylindrical shaft end with splines in	accordance with DIN 5480			3				
Flanged shaft				4				
Sealing								
Seal on input shaft	Seal on output shaft							
WDR	WDR					0		
WDR	Taconite					1		
Туре								
	ermediate gear KAF, shaft arrangem						0	
O2RP (FLENDER SIP O2RP with inte	ermediate gear FAF, shaft arrangem	ient d ₁ to d ₂ : parallel)					1	
Nominal gear ratio <i>i</i> _N								
25								Α
27								в
30								С
33.5								D
38								E
45								F

Order No. supplement 13th and 16th position for FLENDER SIP O2RR with intermediate gear KAF

					•	on of the Order No				0 11			4 15 16
					Order No.		2LP069	 0	F.	• •	0 -		A
	ntermediate g	·											
	R gear unit siz												
30	35	37	40	45	50	55	60						
7.22	7.22	5.36	5.36	5.54	5.54	7.68	7.68					0	C
8.40	8.40	6.44	6.44	6.69	6.69	9.36	9.36					0	1
9.32	9.32	7.58	7.58	8.03	8.03	10.97	10.97					0	2
10.15	10.15	8.50	8.50	9.41	9.41	12.90	12.90					0	3
11.35	11.35	9.52	9.52	11.21	11.21	13.74	13.74					0	4
11.95	11.95	10.40	10.40	11.64	11.64	16.75	16.75					0	5
13.90	13.90	11.41	11.41	14.04	14.04	19.63	19.63					0	6
15.42	15.42	11.94	11.94	16.85	16.85	23.08	23.08					0	7
16.79	16.79	14.35	14.35	19.75	19.75	26.48	26.48					0	8
18.78	18.78	16.89	16.89	23.54	23.54	31.25	31.25					1	0
20.54	20.54	18.93	18.93	25.53	25.53	33.87	33.87					1	1
22.54	22.54	21.22	21.22	28.50	28.50	36.44	36.44					1	2
24.85	24.85	23.16	23.16	30.87	30.87	44.44	44.44					1	3
27.55	27.55	25.42	25.42	34.40	34.40	52.08	52.08					1	4
28.90	28.90	27.99	27.99	41.50	41.50	61.22	61.22					1	5
33.60	33.60	30.38	30.38	49.80	49.80	70.24	70.24					1	6
37.28	37.28	32.78	32.78	58.37	58.37	82.90	82.90					1	7
40.60	40.60	39.39	39.39	69.57	69.57	89.85	89.85			-		1	8
45.41	45.41	46.37	46.37	75.45	75.45	99.90	99.90			-		2	0
49.65	49.65	51.96	51.96	84.21	84.21	108.52	108.52					2	1
54.49	54.49	58.23	58.23	91.22	91.22	120.03	120.03					2	2
60.08	60.08	63.57	63.57	103.38	103.38	128.86	128.86					2	3
66.60	66.60	69.78	69.78	111.37	111.37	138.87	138.87					2	4
75.45	75.45	76.84	76.84	120.42	120.42	150.31	150.31					2	5
83.25	83.25	83.40	83.40	130.77	130.77	163.51	163.51					2	6
94.12	94.12	90.89	90.89	144.58	144.58	178.90	178.90					2	7
107.47	107.47	99.55	99.55	156.63	156.63	201.11	201.11			-		2	8
122.19	122.19	109.64	109.64	176.50	176.50	219.64	219.64					2	0
130.78	130.78	126.09	126.09	193.24	193.24	243.47	243.47					3	1
150.76	150.76	136.60	136.60	215.25	215.25	278.10	278.10					3	2
169.53	169.53	150.98	150.98	246.13	246.13	307.24	307.24					3	3
		176.14	176.14	272.95	272.95							3	4
		196.07	196.07	302.68	302.68							3	5
		215.68	215.68									3	6
		243.72	243.72									3	7

Gear unit combinations FLENDER SIP with MOTOX-N

Selection and ordering data (continued)

Order No. supplement 13th and 16th position for FLENDER SIP O2RP with intermediate gear F.AF

						on of the Order	1 to 6				10				14 15	
					Order No.		2LP069		-	0 F		•	1 -		. A	
	ntermediate g													4		1
	gear unit siz			4-												
30	35	37	40	45	50	55	60							_		
4.33	4.33	3.97	3.97	4.77	4.77	5.68	5.68							0		
5.20	5.20	4.49	4.49	5.82	5.82	6.60	6.60							0		
6.12	6.12	5.75	5.75	6.82	6.82	7.32	7.32							0		
6.86	6.86	6.74	6.74	8.01	8.01	8.70	8.70							0		
7.68	7.68	8.03	8.03	9.19	9.19	10.04	10.04							0		
8.39	8.39	8.55	8.55	10.71	10.71	10.98	10.98							0		
9.23	9.23	10.31	10.31	13.07	13.07	12.77	12.77							0		
11.09	11.09	12.38	12.38	15.31	15.31	14.16	14.16							0		
13.05	13.05	14.51	14.51	18.00	18.00	16.82	16.82							0		
14.63	14.63	17.29	17.29	20.65	20.65	19.41	19.41					-		1		
16.39	16.39	18.75	18.75	24.38	24.38	22.81	22.81							1		
17.89	17.89	20.93	20.93	26.42	26.42	25.85	25.85							1		
19.64	19.64	22.67	22.67	29.38	29.38	30.33	30.33							1		
21.63	21.63	25.69	25.69	31.91	31.91	33.09	33.09							1		-
23.48	23.48	27.68	27.68	35.29	35.29	36.10	36.10							1		-
25.59	25.59	29.93	29.93	37.89	37.89	38.95	38.95							1		-
														1		_
28.02	28.02	32.50	32.50	40.83	40.83	43.54	43.54							_		
30.86	30.86	35.93	35.93	44.20	44.20	46.64	46.64	_						1		
35.49	35.49	38.93	38.93	48.03	48.03	48.24	48.24							2		
38.45	38.45	43.87	43.87	52.60	52.60	50.15	50.15							2		
42.50	42.50	48.03	48.03	54.47	54.47	54.17	54.17	_						2		
43.09	43.09	50.48	50.48	59.13	59.13	58.20	58.20							2		
47.40	47.40	53.50	53.50	64.58	64.58	58.80	58.80							2		
49.58	49.58	58.71	58.71	65.43	65.43	64.21	64.21							2		
55.06	55.06	61.17	61.17	77.04	77.04	69.84	69.84							2		
55.19	55.19	65.14	65.14	86.33	86.33	81.86	81.86							2		
59.62	59.62	70.93	70.93	96.75	96.75	97.57	97.57							2		
60.71	60.71	79.33	79.33	105.61	105.61	105.81	105.81							3		
67.43	67.43	86.74	86.74	115.93	115.93	118.11	118.11							3		
74.10	74.10	95.20	95.20	127.66	127.66	127.92	127.92					-		3		
81.73	81.73	104.96	104.96	138.56	138.56	144.99	144.99							3		
90.53	90.53	116.36	116.36	151.01	151.01	156.19	156.19	-						3		
100.80	100.80	131.82	131.82	165.38	165.38	168.88	168.88							3		
115.68	115.68	145.44	145.44	182.15	182.15	183.39	183.39	-						3		-
128.04	128.04	164.44	164.44	209.49	209.49	202.77	202.77	-						3		
145.63	145.63	187.76	187.76	209.49	209.49	219.66	219.66	-						3		-
														4		_
166.19	166.19	213.48	213.48	250.83	250.83	247.53	247.53	-						_		
187.24	187.24	228.48	228.48	292.64	292.64	271.01	271.01	-						4		_
209.23	209.23	263.39	263.39	325.76	325.76	301.88	301.88	-						4		
238.65	238.65	296.18	296.18	358.33	358.33	345.19	345.19	_						4		_
268.80	268.80			404.92	404.92	382.79	382.79							4		

Notes
© Siemens AG 2012

Connection dimensions

6/2 6/2	Cylindrical shaft ends Central holes DS in accordance with DIN 332-1 in shaft ends
6/3	Selection of fit
6/3	Parallel keys and parallel keyways
6/4	Hollow shafts
6/4	For shrink disk
6/5	With splines in accordance with DIN 5480
6/6	Cylindrical shaft ends
6/6	With splines in accordance with DIN 5480
6/7	Flanged shaft
6/8	With parallel key

Central holes DS in accordance with DIN 332-1 in shaft ends

Dimensioned drawings

Form DS with thread, straight running surface and protective counterbore

Recomm		Form DS											
diameter ranges Ø d ₆ ¹⁾		DS centering	Ød ₁	Ø d ₂ ²⁾	Ød3	$artmesdrem{0}{d_4}$	$Ø d_5$	t ₁	t ₂		t ₃	t ₄	t ₅
above	to							+2	min.	max.			
mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
16	21	DS 6	M6	5.0	6.4	9.6	10.5	16.0	21	23	5.0	2.8	0.4
21	24	DS 8	M8	6.8	8.4	12.2	13.2	19.0	25	28	6.0	3.3	0.4
24	30	DS 10	M10	8.5	10.5	14.9	16.3	22.0	30	34	7.5	3.8	0.6
30	38	DS 12	M12	10.2	13.0	18.1	19.8	28.0	37	42	9.5	4.4	0.7
38	50	DS 16	M16	14.0	17.0	23.0	25.3	36.0	45	50	12.0	5.2	1.0

¹⁾ Diameter refers to the finished workpiece.

²⁾ Tap hole drill diameter acc. to DIN 336-1.

Connection dimensions Cylindrical shaft ends Selection of fit

Overview

Selection of fit

Selection of fit	Shaft Ø d		Shaft tolerance	Bore tolerance
	above	to		
	mm	mm		
Shaft tolerance		25	k6	
acc. to Flender standard	25	100	m6	H7
	100		n6	

Parallel keys and parallel keyways

Drive type fastening without taper action Parallel key and keyway to DIN 6885-1 Parallel key form B

Diamete	er	Width	Height	Depth of keyway in shaft	Depth of keyway in hub
Ød		b ¹⁾	h	t ₁	d + t ₂
above	to				DIN 6885-1
mm	mm	mm	mm	mm	mm
38	44	12	8	5	d + 3.3
44	50	14	9	5.5	d + 3.8
50	58	16	10	6	d + 4.3
58	65	18	11	7	d + 4.4
65	75	20	12	7.5	d + 4.9
75	85	22	14	9	d + 5.4
85	95	25	14	9	d + 5.4
95	110	28	16	10	d + 6.4
110	130	32	18	11	d + 7.4
130	150	36	20	12	d + 8.4
150	170	40	22	13	d + 9.4
170	200	45	25	15	d + 10.4
200	230	50	28	17	d + 11.4

¹⁾ The tolerance field for keyway width b for parallel keys is ISO N9.

Connection dimensions Hollow shafts

For shrink disk

Dimensioned drawings

	Dimensions in												
Gear unit sizes	Chamfer on d ₂	Shaft of o	driven mac	hine		Flange							
		Ød2	Ød3	1 ₂	l ₃	С	Øs	n	t	Øk	z	Ø d ₄ f7	Ø d _a
30	$1 \times 45^{\circ}$	90 h6	88 h6	60	60	17	17.5	16	22.5°	335	8	290	375
35	$1 \times 45^{\circ}$	100 h6	98 h6	64	64	17	17.5	20	18°	385	8	340	425
37	$1 \times 45^{\circ}$	110 h6	108 h6	68	68	19	17.5	24	15°	410	8	370	450
40	$1 \times 45^{\circ}$	120 h6	118 h6	76	76	19	22	18	20°	435	8	390	480
45	$2.5 \times 45^{\circ}$	130 h6	125 h6	80	80	19	22	20	18°	490	8	445	540
50	$2.5 \times 45^{\circ}$	140 h6	135 h6	82	82	24	22	24	15°	540	8	495	585
55	$2.5 \times 45^{\circ}$	165 g6	160 h6	96	96	29	26	24	15°	595	8	535	650
60	$2.5 \times 45^{\circ}$	180 g6	175 g6	116	100	34	26	24	15°	640	8	585	695

	Dimer	nsions i	n mm					
Gear	Shrink	disk						
unit sizes	ØD	Ød	Ø d _w 1)	Н	W	T _A ²⁾	S ₁	Weight, approx.
						Nm		kg
30	185	110	90	51	12	120	M12	5.8
35	215	125	100	55	12	120	M12	8.7
37	230	140	110	61	14	193	M14	10.3
40	263	155	120	64	14	193	M14	15.2
45	290	165	130	70	15	295	M16	21.5
50	300	175	140	71	15	295	M16	22.5
55	340	200	165	87	15	295	M16	36.3
60	370	220	180	103	19	570	M20	53

X = Space required for torque wrench

^1) Tolerance of the hollow shaft drilled hole Ø $\rm d_w$ = H7

²⁾ Tightening torque for clamping screws of property class 12.9 (observe mounting instructions BA 9300)

Connection dimensions Hollow shafts

With splines in accordance with DIN 5480

Dimensioned drawings (continued)

		Dimensio	ns in mm	1										
Gear unit sizes	Chamfer on d ₂	Output shaft				Output with splines in accordance with DIN 5480	Flange							
		Ød ₂	1 ₂	b ₁	b ₂		С	Øs	n	t	Øk	z	Ø d ₄ f7	$\emptyset d_a$
30	$1 \times 45^{\circ}$	92 H7	81	55	20	N 90 \times 3 \times 28 \times 8f	17	17.5	16	22.5°	335	8	290	375
35	$1 \times 45^{\circ}$	102 H7	86	60	20	N 100 \times 3 \times 32 \times 8f	17	17.5	20	18°	385	8	340	425
37	$1 \times 45^{\circ}$	112 H7	102	70	25	N 110 × 3 × 35 × 8f	19	17.5	24	15°	410	8	370	450
40	$1 \times 45^{\circ}$	122 H7	107	75	25	N 120 \times 3 \times 38 \times 8f	19	22	18	20°	435	8	390	480
45	$2.5 \times 45^{\circ}$	132 H7	118	80	30	N 130 × 5 × 24 × 8f	19	22	20	18°	490	8	445	540
50	$2.5 \times 45^{\circ}$	142 H7	123	85	30	N 140 × 5 × 26 × 8f	24	22	24	15°	540	8	495	585
55	$2.5 \times 45^{\circ}$	172 g6	144	100	35	N 170 × 5 × 32 × 8f	29	26	24	15°	595	8	535	650
60	$2.5 \times 45^{\circ}$	182 g6	155	110	35	N 180 \times 5 \times 34 \times 8f	34	26	24	15°	640	8	585	695

With splines in accordance with DIN 5480

Dimensioned drawings (continued)

	Dimensions in mm														
Gear unit sizes	Splines in accordance with DIN 5480	Outp	Dutput					Flange							
		b ₁	b ₂	b ₃	l ₂	d ₁ p ₆	d ₃ p ₆	С	Øs	n	t	Øk	z	Ø d ₄ f7	Ø d _a
30	W110 $ imes$ 3 $ imes$ 35 $ imes$ 8h	11	19	15	63.5	100	112	17	17.5	16	22.5°	335	8	290	375
35	$W120 \times 3 \times 38 \times 8h$	13	23	17	71.5	110	122	17	17.5	20	18°	385	8	340	425
37	$W130 \times 3 \times 42 \times 8h$	13	25	19.5	76	120	132	19	17.5	24	15°	410	8	370	450
40	$W140 \times 3 \times 45 \times 8h$	13	27.5	19.5	78.5	130	142	19	22	18	20°	435	8	390	480
45	W150 \times 3 \times 48 \times 8h	13	33	20.5	85	140	152	19	22	20	18°	490	8	445	540
50	W160 \times 3 \times 52 \times 8h	14	33	20.5	86	150	162	24	22	24	15°	540	8	495	585
55	W200 \times 3 \times 65 \times 8h	14	31	20.5	84	190	202	29	26	24	15°	595	8	535	650
60	W220 \times 5 \times 42 \times 8h	14	32	26	95.5	205	222	34	26	24	15°	640	8	585	695

The non-drive-end bearing is designed for the use of coupling elements, which cannot convey shearing forces. Additional forces please on request.

Flanged shaft

Dimensioned drawings (continued)

	Dimension	Dimensions in mm											
Gear unit sizes	Output												
	b ₄	b ₅	b ₆	d ₃	d ₄ h ₆	d ₅	d ₆	d ₇	m	u			
30	10	12	20	125	165	210.0	250	22	10	36°			
35	10	12	22.5	135	175	217.5	260	22	12	30°			
37	10	12	22.5	145	190	227.5	27	22	16	22.5°			
40	10	12	22.5	155	205	247.5	290	22	18	20°			
45	10	12	25	165	220	270.0	320	26	16	22.5°			
50	10	12	25	175	230	285.0	340	26	18	20°			
55	10	12	27.5	220	290	355.0	415	33	16	22.5°			
60	10	12	27.5	240	315	380.0	440	33	16	22.5°			

The non-drive-end bearing is designed for the use of coupling elements, which cannot convey shearing forces. Additional forces please on request.

With parallel key

Dimensioned drawings (continued)

	Dimensior	ns in mm								
Gear unit sizes			Flange							
	d ₂ n ₆	l ₂	С	Øs	n	t	Øk	Z	Ø d ₄ f7	Ø d _a
30	110	165	17	17.5	16	22.5°	335	8	290	375
35	120	185	17	17.5	20	18°	385	8	340	425
37	130	205	19	17.5	24	15°	410	8	370	450
40	140	215	19	22	18	20°	435	8	390	480
45	150	235	19	22	20	18°	490	8	445	540
50	160	255	24	22	24	15°	540	8	495	585
55	200	290	29	26	24	15°	595	8	535	650
60	220	295	34	26	24	15°	640	8	585	695

The non-drive-end bearing is designed for the use of coupling elements, which cannot convey shearing forces. Additional forces please on request.

© Siemens AG 2012

Options for operation

7/2	Shaft seals
7/2	Radial shaft seal
7/2	Taconite
7/2	Ordering information
7/3	Oil level monitoring
7/3	Oil temperature monitoring
7/3	Ordering information
7/4	Application
7/4	Climatic stress/coating system
7/4	Color selection
7/4	Ordering information
7/5	Information about oil
7/5	Information about installation
7/5	Ordering information
7/6	Factory certificates
7/6	Further information
7/6	Ordering information
7/7	Explosion protection in accordance
	with ATEX 95
7/7	Ordering information

Options for operation Shaft seals

Overview

Radial shaft seal

Radial shaft seals are suitable for low to average operating speeds. They can be used for all types and sizes.

Other features are:

- · Wearing seal, however, easy to maintain
- Local heat development on sealing lip; therefore, adequate lubrication (cooling) required
- Commercial product
- · Design with low oil level on request

Ordering information

Taconite seals are grease-filled, refillable labyrinth seal combinations.

With this seal a high degree of operational reliability is achieved for the gear unit in dusty environments. This seal is a combination of 3 sealing elements which protect the gear unit from the ingress of dust-like particles.

When a geared motor is used in accordance with Chapter 5 "Gear unit combinations", taconite seals are not required on the input shaft because the coupling enclosure is sealed dust-tight.

Data position of the Ord	er No.	1 to 6 7	8 9 10 11 12	13 14 15 16
Order No.		2LP069	0	
Sealing				
Seal on input shaft	Seal on output shaft			
WDR	WDR		0	
WDR	Taconite		1	
Taconite	WDR		2	
Taconite	Taconite		3	

Options for operation Oil level monitoring, oil temperature monitoring

Overview (continued)

Oil level monitoring

For oil level monitoring, the gear unit housing is equipped with an oil level screw as standard.

As an option, the gear unit can be equipped with an oil inspec-tion window for checking the oil level. The oil sight glass features a special, scratch-proof glass with extra-thick walls.

Ordering information

When ordering the oil sight glass, -Z should be added to the order number.

Data position of the Order No.	1 to 6 7 8 9 10 11 12 13 14 15 16 Order code
Order No.	2LP069 0Z
Supplied with oil sight glass	H51

Oil temperature monitoring

Monitoring of the oil sump temperature by means of a thermistor is available as an option.

Ordering information

When ordering the resistance thermometer, -Z should be added to the order number.

Data position of the Order No.	1 to 6 7 8 9 10 11 12 13 14 15 16 Order code
Order No.	2LP069 0Z
Supplied with Pt100 resistance thermometer	H40

Note:

Pt100 resistance thermometer only in combination with increased oil level.

© Siemens AG 2012

Options for operation Application, climatic stress/coating system, color selection

Application					
Ordering information					
The application is set as standard to: General mechanical engineering	1 . 0 7		0 10 11 1	0 10 14 15 1	
Data position of the Order No.	1 to 6 7			2 13 14 15 1	
Order No.	2LP069 .	- 0			Z
General mechanical engineering					A20
Climatic stress/coating system					
The coating system results from the prevailing climatic stress and is generated automatically. (Order code B41 , B43 , B44)					
Ordering information					
Data position of the Order No.	1 to 6 7	8	9 10 11 1	2 13 14 15 1	6 Order cor
Order No.					
		-			
Moderate climate zone, Central European conditions					B01+B41
Maritime coastal areas, marine climate, maritime transport, tropical, subtropical					B02+B43
Corrosive, chemical atmosphere, aggressive environmental conditions					B03+B44
Ordering information					
Data position of the Order No.	1 to 6 7	8	9 10 11 1	2 13 14 15 1	6 Order coo
Order No.	2LP069 .	- 0			Z
Standard coating, top coat, moderate climate zones					B41
Standard coating, top coat, all climate zones					B43
Standard coating, top coat, all climate zones, high resistance to chemicals					B44
Color selection					
The top coat for Flender SIP planetary gear units is applied as standard in the color RAL 5015 (sky blue). The gear units can also be supplied in other colors, if required.					
Ordering information					
	order number.			2 13 14 15 1	
When ordering a gear unit in a different color, -Z should be added to the		8	9 10 11 1	2 10 11 10 1	6 Order cor
When ordering a gear unit in a different color, -Z should be added to the Data position of the Order No.	1 to 6 7				
When ordering a gear unit in a different color, -Z should be added to the Data position of the Order No.	1 to 6 7				
When ordering a gear unit in a different color, -Z should be added to the Data position of the Order No. Order No.	1 to 6 7				Z
When ordering a gear unit in a different color, -Z should be added to the Data position of the Order No. Order No. RAL 5015 sky blue	1 to 6 7				
When ordering a gear unit in a different color, -Z should be added to the Data position of the Order No. Order No. RAL 5015 sky blue RAL 5009 azure blue	1 to 6 7				-Z C00 C01
When ordering a gear unit in a different color, -Z should be added to the Data position of the Order No. Order No. RAL 5015 sky blue RAL 5009 azure blue RAL 5010 gentian blue	1 to 6 7				Z C00
When ordering a gear unit in a different color, -Z should be added to the Data position of the Order No. Order No. RAL 5015 sky blue RAL 5009 azure blue RAL 5010 gentian blue RAL 1003 signal yellow	1 to 6 7				Z C00 C01 C02
When ordering a gear unit in a different color, -Z should be added to the Data position of the Order No. Order No. RAL 5015 sky blue RAL 5009 azure blue RAL 5010 gentian blue RAL 1003 signal yellow RAL 1021 rape yellow	1 to 6 7				-Z C00 C01 C02 C03
When ordering a gear unit in a different color, -Z should be added to the Data position of the Order No. Order No. RAL 5015 sky blue RAL 5009 azure blue RAL 5010 gentian blue RAL 1003 signal yellow RAL 1021 rape yellow RAL 1028 melon yellow	1 to 6 7				Z C00 C01 C02 C03 C04
When ordering a gear unit in a different color, -Z should be added to the Data position of the Order No. Order No. RAL 5015 sky blue RAL 5009 azure blue RAL 5010 gentian blue RAL 1003 signal yellow RAL 1021 rape yellow RAL 1028 melon yellow RAL 1028 melon yellow	1 to 6 7				Z C00 C01 C02 C03 C04 C05
When ordering a gear unit in a different color, -Z should be added to the Data position of the Order No. Order No. RAL 5015 sky blue RAL 5019 azure blue RAL 5010 gentian blue RAL 1003 signal yellow RAL 1021 rape yellow RAL 1021 rape yellow RAL 1028 melon yellow RAL 6011 reseda green RAL 7031 blue gray	1 to 6 7			· · · · · ·	Z C00 C01 C02 C03 C04 C05 C06
When ordering a gear unit in a different color, -Z should be added to the Data position of the Order No. Order No. RAL 5015 sky blue RAL 5009 azure blue RAL 5010 gentian blue RAL 1003 signal yellow RAL 1021 rape yellow RAL 1021 rape yellow RAL 1028 melon yellow RAL 1011 reseda green RAL 7031 blue gray RAL 7035 light gray	1 to 6 7			· · · · · ·	Z C00 C01 C02 C03 C04 C05 C06 C07
When ordering a gear unit in a different color, -Z should be added to the Data position of the Order No. Order No. RAL 5015 sky blue RAL 5009 azure blue RAL 5010 gentian blue RAL 1003 signal yellow RAL 1021 rape yellow RAL 1028 melon yellow RAL 1028 melon yellow RAL 7031 blue gray RAL 7035 light gray RAL 7035 light gray	1 to 6 7			· · · · · ·	Z C00 C01 C02 C03 C04 C05 C06 C07 C08
When ordering a gear unit in a different color, -Z should be added to the Data position of the Order No. Order No. RAL 5015 sky blue RAL 5010 gentian blue RAL 5010 gentian blue RAL 1003 signal yellow RAL 1021 rape yellow RAL 1028 melon yellow RAL 1028 melon yellow RAL 7031 blue gray RAL 7031 blue gray RAL 7035 light gray RAL 7021 dark gray RAL 7030 stone grey	1 to 6 7			· · · · ·	 -Z C00 C01 C02 C03 C04 C05 C06 C07 C08 C09

Other colors are available on request (see Page 7/6 Further information).

Options for operation Information about oil, information about installation

Overview (continued)

Information about oil

FLENDER SIP planetary gear units are supplied without oil as standard.

Ordering information

The following options can be selected by ordering the gear units with the order code -Z:

• Permissible types of oil

Data position of the Order No.	1 to 6	7	8	9 10 1	1 12	13	14 15 16	3 Order code
Order No.	2LP069		0					-Z
Provided for mineral oil								H00
Provided for synthetic oil on a polyglycolic basis (PG oil)								H01
Provided for synthetic oil on a polyalphaolefin basis (PAO oil)								H02
Provided for synthetic low temperature oil on a polyalphaolefin basis (PAO-T oil)								H03
Filled with oil, synthetic oil on a polyalphaolefin basis ($n_1 > 900$ rpm)								H04
Filled with oil, synthetic oil on a polyalphaolefin basis ($n_1 \leq 900$ rpm)								H05

• Permissible oil viscosities

Data position of the Order No.	1 to 6 7 8 9 10 11 12 13 14 15 16 Order code
Order No.	2LP069 0Z
ISO VG 460	H10
ISO VG 320	H11
ISO VG 220	H12

Note:

See Page 2/2 dip lubrication

Information about installation

Ordering information

The following options regarding altitude and installation location are selected using the order code -Z:

• Altitude and ambient temperature

Data position of the Order No.	1 to 6 7 8 9 10 11 12 13 14 15 16 Order code
Order No.	2LP069 0Z
Gear unit designed for low temperatures down to -40 °C	G29
up to 1000 m	G30
1001 to 2000 m	G31
2001 to 3000 m	G32

4001 to 5000 m Position of use

3001 to 4000 m

Data position of the Order No.	1 to 6 7 8 9 10 11 12 13 14 15 16 Order code
Order No.	2LP069 0Z
Small, closed rooms	G35
Large rooms, halls	G36
Outdoors	G37

G33

G34

Options for operation Factory certificates, further information

Overview (continued)

Factory certificates

The declaration of compliance with the order in accordance with DIN EN 10204-2.1 is part of the standard scope of supply.

• Declaration of compliance with order 2.1

Certificate in which the manufacturer confirms that the supplied products comply with the requirements of the order without details of test results.

• Test report 2.2

Certificate in which the manufacturer confirms that the supplied products comply with the requirements of the order complete with the results of non-specific tests.

Ordering information

When ordering with additional test report in accordance with DIN EN 10204-2.2, -Z should be added to the order number.

Data position of the Order No.	1 to 6 7 8 9 10 11 12 13 14 15 16 Order code
Order No.	2LP069 0Z

D97

Additionally with test report to DIN EN 10204-2.2

Further information

Ordering information

The following further information can be provided in the order number using the order code -Z.

Data position of the Order No.	1 to 6 7 8 9 10 11 12 13 14 15 16 Order code
Order No.	2LP069 0Z
RAL color for top coat 1)	Y00
Minimum ambient temperature [°C]	Y01
Maximum ambient temperature [°C]	Y02
Input speed n ₁ FLENDER SIP [rpm]	Y20
Power rating of driven machine P_2 [kW] ²⁾	Y21
Torque of the driven machine T_2 [Nm] ²⁾	Y22
Input power P1 FLENDER SIP [kW]	Y23
Additional text available for product description	Y99

¹⁾ Further colors, other than those offered in the catalog.

 $^{2)}$ Specify $P_{\rm 2}~{\rm or}~T_{\rm 2}$

Options for operation Explosion protection as per ATEX 95

Overview (continued)

Explosion protection in accordance with ATEX 95

FLENDER SIP planetary gear units are certified in accordance with Directive 94/9/EU and are permitted to be used in hazardous environments.

Position in code	Designation	Variance	SIP standard	Note
1	Equipment group	CE EX II	Equipment group II	
		CE EX I	Equipment group I	
2	Zone	2G (gases, vapors and mist)	Zone 1	Combination possible
		2D (dust)	Zone 21	
		3G (gases, vapors and mist)	Zone 2	Combination possible
		3D (dust)	Zone 22	
3 Explosion subgroup		II B	II B (includes II A)	Omitted for dust
		II C		
4	Temperature class	T4	T4 (includes T3, T2, T1)	Combination possible
5		D 120 °C	120 °C or higher	
6	Type of protection	 b Ignition source monitoring c Constructional enclosure k Liquid enclosure 	ck Standard Category 3 bck Standard Category 2	
7	Ambient temperature range	$-20 \text{ °C} \le T_a \le 40 \text{ °C}$		

The following ATEX codes as well as the necessary supplementary options result from the overview.

Category	ATEX code	•						Necessary option
	1	2	3	4	5	6	7	
2	CE EX II	2G	IIB	T4	D 120 °C	bck	$-20 \text{ °C} \le T_a \le 40 \text{ °C}$	Taconite, Pt100 (ATEX), protective cover for shrink disk
3	CE EX II	3G	IIB	Τ4	D 120 °C	ck	$-20 \text{ °C} \le T_a \le 40 \text{ °C}$	Taconite, protective cover for shrink disk
2	CE EX II	2G	IIC	Τ4	D 120 °C	bck	$-20 \text{ °C} \le T_a \le 40 \text{ °C}$	Taconite, Pt100 (ATEX) protective cover for shrink disk, max. paint layer thickness 0.2 mm
3	CE EX II	3G	IIC	Τ4	D 120 °C	ck	$-20 \text{ °C} \le T_a \le 40 \text{ °C}$	Taconite; protective cover for shrink disk, max. paint layer thickness 0.2 mm

Ordering information

When ordering a gear unit to ATEX 95, -Z should be added to the order number.

Data position of the Order No.	1 to 6 7 8 9 10 11 12 13 14 15 16 Order co
Order No.	2LP069 0 Z
Category 2, explosion subgroup II B or minimum ignition energy > 3 mJ	X30
Category 3, explosion subgroup II B or minimum ignition energy > 3 mJ	X31
Category 2, explosion subgroup II C or minimum ignition energy \leq 3 mJ	X32
Category 3, explosion subgroup II C or minimum ignition energy \leq 3 mJ	X33
Data position of the Order No.	1 to 6 7 8 9 10 11 12 13 14 15 16 Order co
Order No.	2LP069 0Z
Supplied with Pt100 measurement resistor (ATEX version)	H44
Supplied with ATEX protective cover for shrink disk	M02

Options for operation

Notes

© Siemens AG 2012

Options for installation and attachment parts

8/2	Housing torque arm (single arm), rigid
8/2	Dimensioned drawings
8/2	Ordering information
8/3	Housing torque arm (single arm), oscillation damping
8/3	Dimensioned drawings
8/3	Ordering information
8/4	Gear housing base
8/4	Dimensioned drawings
8/4	Ordering information
8/5	Motor bell housing for IEC motors
8/5	Overview
8/5	Design

© Siemens AG 2012 Options for installation and attachment parts Housing torque arm (single arm), rigid

Dimensioned drawings

		Dimensions in mm										
Gear unit sizes	Nominal output torque T_{2N}	D ₁	G ₂	G ₁₀	а	b	С	Weight, approx.				
	Nm							kg				
30	10000	375	132	25	55	225	435	12.5				
35	15000	425	115	25	60	260	480	15				
37	20000	450	122	25	70	280	555	18.5				
40	25000	480	125	30	80	310	690	29				
45	35000	540	135	30	90	330	725	32				
50	45000	585	135	30	110	430	905	49				
55	65000	670	185	35	130	450	1065	72				
60	80000	695	206	35	130	500	1065	72				

In the case of shaft-mounted gear units with a torque arm, the connection between the torque arm and foundation must always allow the gear unit to move in accordance with the bearings of the machine shaft, without constraining forces acting on the gear unit.

Ordering information

When ordering the housing torque arm, -Z should be added to the order number.

Data position of the Order No.	1 to 6 7 8 9 10 11 12 13 14 15 16 Order code
Order No.	2LP069 0Z
Prepared for mounting a housing torque arm (single arm)	M11
Housing torque arm (single arm), rigid	M10

Housing torque arm (single arm), rigid

The gear unit is designed as standard for flange mounting or base attachment.

If a single housing torque arm is used, special bearings are required.

This is also necessary when the housing torque arm is not included in the order, but the customer plans to use it.

If a single housing torque arm is used, compliance with the minimum dimension c for the length of the lever arm is essential. Note:

For hollow shaft with splines in accordance with DIN 5480, no combination with torque arm is allowed.

© Siemens AG 2012 Options for installation and attachment parts Housing torque arm (single arm), oscillation damping

Dimensioned drawings

		Dime	Dimensions in mm															
Gear unit sizes	Nominal output torque T _{2N}	D ₁	G ₂	G ₁₀	а	b	С	A	В	Ød ₃	F	H ₁	H ₂	m	n	s ₁	Metalastic socket	Weight, approx.
	Nm																	kg
30	10000	375	132	25	55	225	435	200	160	19	170	250	90	160	120	20	095	33
35	15000	425	115	25	60	260	480	200	160	19	170	250	90	160	120	20	095	35.5
37	20000	450	122	25	70	280	555	200	160	19	170	250	90	160	120	20	095	39
40	25000	480	125	30	80	310	690	200	160	19	170	250	90	160	120	20	095	49.5
45	35000	540	135	30	90	330	725	200	160	19	170	250	90	160	120	20	095	52.5
50	45000	585	135	30	110	430	905	200	160	19	170	250	90	160	120	20	095	69.5
55	65000	670	185	35	130	450	1065	320	200	19	195	400	140	260	130	25	772	126.5
60	80000	695	206	35	130	500	1065	320	200	19	195	400	140	260	130	25	772	126.5

In the case of shaft-mounted gear units with a torque arm, the connection between the torque arm and foundation must always allow the gear unit to move in accordance with the bearings of the machine shaft, without constraining forces acting on the gear unit.

Ordering information

When ordering the housing torque arm, -Z should be added to the order number.

Data position of the Order No.	1 to 6 7 8 9 10 11 12 13 14 15 16 Order code
Order No.	2LP069 0Z
Prepared for mounting a housing torque arm (single arm)	M11
Housing torque arm (single arm), oscillation damping	M14

Note:

The torque arm is supplied loose. The damping element (support block) is preassembled and is supplied loose. For hollow shaft with splines in accordance with DIN 5480, no combination with torque arm is allowed.

© Siemens AG 2012 Options for installation and attachment parts Gear housing base

Dimensioned drawings

M17

Dimensions in mm											Bolts							
Gear unit sizes	а	b	С	d	Øe	h	Н	m ₁	m ₂	m ₃	m ₄	m ₅	Feet	T _A 1)	Flange	e	T _A 1)	Weight, approx.
													S	Nm	S	Qty.	Nm	kg
30	460	330	80	20	17.5	235	435	390	290	221	195	20.0	M16	186	M16	16	186	24
35	530	365	85	20	17.5	260	490	450	320	251	216	22.5	M16	186	M16	20	186	30
37	565	375	90	25	17.5	280	518	475	330	250	231	22.5	M16	186	M16	24	186	43
40	615	415	115	25	22	295	548	500	360	270	237	27.5	M20	364	M20	18	364	54
45	695	470	120	30	22	330	613	575	410	300	247	30.0	M20	364	M20	20	364	101
50	745	510	120	30	22	350	655	625	450	340	267	30.0	M20	364	M20	24	364	102
55	845	570	145	35	26	395	733	700	500	380	299	35.0	M24	614	M24	24	614	146
60	895	590	145	35	26	415	775	750	520	400	306	35.0	M24	614	M24	24	614	175
Ordering	Ordering information																	
Data posi	tion of t	he Orde	er No.								1 to	67	89	10 11	12 1	3 14 15	5 16 Or	der code
Order No. 2LP069 0																		
																		•
Supplied	with ge	ar nousi	ng base	Э													M1	6

Supplied with gear housing base for assembly

The required connectors are included for supply with a gear housing base for assembly.

1) Tightening torques for screws of property class 8.8

© Siemens AG 2012 Options for installation and attachment parts Motor bell housing for IEC motors

Overview

It is possible to attach an IEC motor to the FLENDER SIP planetary gear unit using a motor bell housing and elastic coupling.

Further information is available on request.

Design

© Siemens AG 2012 Options for installation and attachment parts

Notes

Appendix

9/2	Partners at Industry Automation and Drive Technologies
9/3 9/3	Online Services Information and Ordering in the Internet and on DVD
9/4 9/4	Siemens Industry Online Support Unmatched complete service for the entire life cycle
9/7 9/7	Index Subject index
9/8	Conditions of sale and delivery

Appendix Partners at Industry Automation and Drive Technologies

the Datasen The Earthogo matters The Danishing Weitage Controls and Thirth Johan y Spitzenson - Kadhey Disequented shard Database in The Chancillago match The Understory

Averand the point to concerning. More Solver, A particul quere and the second s At Siemens Industry Automation and Drive Technologies, more than 85 000 people are resolutely pursuing the same goal: longterm improvement of your competitive ability. We are committed to this goal. Thanks to our commitment, we continue to set new standards in automation and drive technology. In all industries – worldwide.

At your service locally, around the globe for consulting, sales, training, service, support, spare parts ... on the entire Industry Automation and Drive Technologies range.

Your personal contact can be found in our Contacts Database at: www.siemens.com/automation/partner

You start by selecting a

- Product group,
- Country,
- City,
- Service.

Information and Ordering in the Internet and on DVD

Siemens Industry Automation and Drive Technologies in the WWW

A detailed knowledge of the range of products and services available is essential when planning and configuring automation systems. It goes without saying that this information must always be fully up-to-date.

Siemens Industry Automation and Drive Technologies has therefore built up a comprehensive range of information in the World Wide Web, which offers quick and easy access to all data required.

Under the address

www.siemens.com/industry

you will find everything you need to know about products, systems and services.

Product Selection Using the Interactive Catalog CA 01 of Industry

Detailed information together with convenient interactive functions:

The interactive catalog CA 01 covers more than 80 000 products and thus provides a full summary of the Siemens Industry Automation and Drive Technologies product base.

Here you will find everything that you need to solve tasks in the fields of automation, switchgear, installation and drives. All information is linked into a user interface which is easy to work with and intuitive.

After selecting the product of your choice you can order at the press of a button, by fax or by online link.

Information on the interactive catalog CA 01 can be found in the Internet under

www.siemens.com/automation/ca01

or on DVD.

The Industry Mall is the virtual department store of Siemens AG in the Internet. Here you have access to a huge range of products presented in electronic catalogs in an informative and attractive way.

Data transfer via EDIFACT allows the whole procedure from selection through ordering to tracking of the order to be carried out online via the Internet.

Numerous functions are available to support you.

For example, powerful search functions make it easy to find the required products, which can be immediately checked for availability. Customer-specific discounts and preparation of quotes can be carried out online as well as order tracking and tracing.

Please visit the Industry Mall on the Internet under:

www.siemens.com/industrymall

Appendix Siemens Industry Online Support

Unmatched complete service for the entire life cycle

For machine constructors, solution providers and plant operators: The service offering from Siemens Industry, Automation and Drive Technologies includes comprehensive services for a wide range of different users in all sectors of the manufacturing and process industry

To accompany our products and systems, we offer integrated and structured services that provide valuable support in every phase of the life cycle of your machine or plant – from planning and implementation through commissioning as far as maintenance and modernization.

Online Support

The comprehensive online information platform supports you in all aspects of our Service & Support at any time and from any location in the world.

www.siemens.com/ automation/service&support

Our Service & Support accompanies you worldwide in all matters concerning automation and drives from Siemens. We provide direct on-site support in more than 100 countries through all phases of the life cycle of your machines and plants.

You have an experienced team of specialists at your side to provide active support and bundled know-how. Regular training courses and intensive contact among our employees – even across continents – ensure reliable service in the most diverse areas.

Technical Consulting

Support in planning and designing your project: From detailed actual-state analysis, definition of the goal and consulting on product and system questions right through to the creation of the automation solution.

Technical Support

Expert advice on technical questions with a wide range of demand-optimized services for all our products and systems.

www.siemens.com/ automation/support-request Training

Extend your competitive edge – through practical know-how directly from the manufacturer.

www.siemens.com/sitrain

Contact information is available in the Internet at: www.siemens.com/automation/partner

Appendix Siemens Industry Online Support

Unmatched complete service for the entire life cycle

Engineering Support

Field Service

Support during project engineering and development with services fine-tuned to your requirements, from configuration through to implementation of an automation project.

Our Field Service offers you

maintenance - to ensure that

your machines and plants are

always available.

services for commissioning and

Modernization

You can also rely on our support when it comes to modernization – with comprehensive services from the planning phase all the way to commissioning.

Service programs

Our service programs are selected service packages for an automation and drives system or product group. The individual services are coordinated with each over to ensure smooth coverage of the entire life cycle and support optimum use of your products and systems.

The services of a Service Program can be flexibly adapted at any time and used separately.

Examples of service programs:

- Service contracts
- Plant IT Security Services
- Life Cycle Services for Drive Engineering
- SIMATIC PCS 7 Life Cycle Services
- SINUMERIK Manufacturing Excellence
- SIMATIC Remote Support Services

Advantages at a glance:

- Reduced downtimes for increased productivity
- Optimized maintenance costs due to a tailored scope of services
- Costs that can be calculated and therefore planned
- Service reliability due to guaranteed response times and spare part delivery times
- Customer service personnel will be supported and relieved of additional tasks
- Comprehensive service from a single source, fewer interfaces and greater expertise

In every sector worldwide, plants and systems are required to operate with constantly increasing reliability. We will provide you with the support you need to prevent a standstill from occurring in the first place: with a worldwide network and optimum logistics chains.

Repairs

Downtimes cause problems in the plant as well as unnecessary costs. We can help you to reduce both to a minimum – with our worldwide repair facilities.

Optimization

During the service life of machines and plants, there is often a great potential for increasing productivity or reducing costs. To help you achieve this potential, we are offering a complete range of optimization services.

Contact information is available in the Internet at: www.siemens.com/automation/partner

Appendix Siemens Industry Online Support

Knowledge Base on DVD

For locations without online connections to the Internet there are excerpts of the free part of the information sources available on DVD (Service & Support Knowledge Base). This DVD contains all the latest product information at the time of production (FAQs, Downloads, Tips and Tricks, Updates) as well as general information on Service & Support.

Automation Value Card

Small card – great support

The Automation Value Card is an integral component of the comprehensive service concept with which Siemens Drive Automation and Drive Technologies will accompany you in each phase of your automation project.

It doesn't matter whether you want just specific services from our Technical Support or want to purchase something on our Online portal, you can always pay with your Automation Value Card. No invoicing, transparent and safe. With your personal card number and associated PIN you can view the state of your account and all transactions at any time.

Services on card. This is how it's done.

Card number and PIN are on the back of the Automation Value Card. When delivered, the PIN is covered by a scratch field, guaranteeing that the full credit is on the card.

The DVD also includes a full-text search and our Knowledge Manager for targeted searches for solutions. The DVD will be updated every 4 months.

Just the same as our online offer in the Internet, the Service & Support Knowledge Base on DVD comes complete in 5 languages (German, English, French, Italian, Spanish).

You can order the Service & Support Knowledge Base DVD from your Siemens contact.

Order no. 6ZB5310-0EP30-0BA2

By entering the card number and PIN you have full access to the Service & Support services being offered. The charge for the services procured is debited from the credits on your Automation Value Card.

All the services offered are marked in currency-neutral credits, so you can use the Automation Value Card worldwide.

Order your Automation and Value Card easily and comfortably like a product with your sales contact.

Credits	Order no.
200	6ES7 997-0BA00-0XA0
500	6ES7 997-0BB00-0XA0
1 000	6ES7 997-0BC00-0XA0
10 000	6ES7 997-0BG00-0XA0

Detailed information on the services offered is available on our Internet site at:

www.siemens.com/automation/service&support

Service & Support à la Card: Examples

Technical Sup	port					
"Priority"	Priority processing for urgent cases					
"24 h"	Availability round the clock					
"Extended"	Technical consulting for complex questions					
"Mature Products"	Consulting service for products that are not available any more					
Support Tools in the Support Shop						

Tools that can be used directly for configuration, analysis and testing

R

s

Т

Selection of the gear units

Appendix Index

Subject index

<u>A</u>	
Application	7/4
С	
Calculation example	
FLENDER SIP with MOTOX-N	5/2
Selection of gear unit	
Central holes DS according to DIN 332-1 in shaft ends	
Climatic stress/coating system	
Color selection	
Conditions of sale and delivery/export regulations	
Connection dimensions	
Contacts at Industry Automation and Drive Technologies	
Cylindrical shaft ends	6/2
D	
Declaration of compliance with order in accordance with DIN EN 10204-2.1	7/6
Determination of gear unit type and size	
Determination of gear unit type and size	
E	
Environmental conditions	
Explosion protection as per ATEX 95	7/7
F	
Factory certificates	7/6
Flanged shaft	
FLENDER SIP with MOTOX-N	5/2
G	
Gear housing base	Q/4
Gear unit combinations FLENDER SIP with MOTOX-N	
Guidelines for selection	
Calculation example	0/5
Constant mechanical power rating	
Key to symbols Service factors	
Variable power rating	3/3
H	- 1 -
Hollow shafts	6/4
Housing torque arm (single arm)	
oscillation damping	
• rigid	
1	
nformation about installation	7/5
nformation about oil	7/4
ntroduction	1/1
М	
Maintenance	2/2
Maintenance Motor bell housing for IEC motors	
5	
Mounting positions	
Notes	
Characteristic features	
General information	
Summary of basic types	1/2

0	
Oil level monitoring	7/3
Oil temperature monitoring	7/3
Online services	
Options for installation and attachment parts	8/1
Gear housing base	
• Housing torque arm (single arm), oscillation damping	8/3
• Housing torque arm (single arm), rigid	
Motor bell housing for IEC motors	
Options for operation	7/1
Application	7/4
Color selection	7/4
Climatic stress/coating system	7/4
Explosion protection as per ATEX 95	7/7
Factory certificates	7/6
Information about installation	7/5
Information about oil	7/4
Oil level monitoring	
Oil temperature monitoring	
Ordering information	
Radial shaft seal	
Shaft seals	
Taconite	7/2
Ordering information	4, 7/5, 7/6, 7/7
Overview tables	
Actual ratio	3/8
Nominal outputs	
Nominal output torques	
Thermal capacities	
Ρ	
Parallel keys	6/8
Parallel keys and parallel keyways	6/3
Planetary gear units, horizontal mounting position	
Selection and ordering data	
Two-stage gear units, coaxial	
Preservation	

 Taconite
 .7/2

 Technical information
 .2/1

 Technical standards
 .2/2

 Two-stage gear units, coaxial
 .4/2

 Shaft seals
 7/2

 Siemens Industry Online Support
 9/4

 Splines in accordance with DIN 5480
 6/6

 Summary of basic types
 1/2

 Symbols used in the dimensioned drawings
 1/3

Conditions of sale and delivery

1. General Provisions

By using this catalog you can acquire hardware and software products described therein from Siemens AG subject to the following Terms and Conditions of Sale and Delivery (hereinafter referred to as "T&C"). Please note! The scope, the quality and the conditions for supplies and services, including software products, by any Siemens entity having a registered office outside Germany, shall be subject exclusively to the General Terms and Conditions of the respective Siemens entity. The following T&C apply exclusively for orders placed with Siemens Aktiengesellschaft, Germany.

1.1 For customers with a seat or registered office in Germany

For customers with a seat or registered office in Germany, the following applies subordinate to the T&C:

- the "General Terms of Payment" 1) and,
- for software products, the "General License Conditions for Software Products for Automation and Drives for Customers with a Seat or Registered Office in Germany" ¹⁾ and,
- for other supplies and/or services, the "General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry" ¹⁾.

1.2 For customers with a seat or registered office outside Germany

For customers with a seat or registered office outside Germany, the following applies subordinate to the T&C:

- the "General Terms of Payment" 1) and,
- for software products, the "General License Conditions for Software Products for Automation and Drives for Customers with a Seat or Registered Office outside of Germany" ¹) and
- for other supplies and/or services, the "General Conditions for Supplies of Siemens Industry for Customers with a Seat or Registered Office outside of Germany" ¹⁾.

2. Prices

The prices are in € (Euro) ex works, exclusive of packaging.

The sales tax (value added tax) is not included in the prices. It shall be debited separately at the respective rate according to the applicable statutory legal regulations.

Prices are subject to change without prior notice. We will debit the prices valid at the time of delivery.

To compensate for variations in the price of raw materials (e.g. silver, copper, aluminum, lead, gold, dysprosium and neodym), surcharges are calculated on a daily basis using the so-called metal factor for products containing these raw materials. A surcharge for the respective raw material is calculated as a supplement to the price of a product if the basic official price of the raw material in question is exceeded.

The metal factor of a product indicates the basic official price (for those raw materials concerned) as of which the surcharges on the price of the product are applied, and with what method of calculation.

An exact explanation of the metal factor can be downloaded at: www.siemens.com/automation/salesmaterial-as/catalog/de/ terms_of_trade_de.pdf

To calculate the surcharge (except in the cases of dysprosium and neodym), the official price from the day prior to that on which the order was received or the release was effected is used.

To calculate the surcharge applicable to dysprosium and neodym ("rare earths"), the corresponding three-month basic average price in the quarter prior to that in which the order was received or the release was effected is used with a one-month buffer (details on the calculation can be found in the explanation of the metal factor).

3. Additional Terms and Conditions

The dimensions are in mm. In Germany, according to the German law on units in measuring technology, data in inches apply only to devices for export.

Illustrations are not binding.

Insofar as there are no remarks on the individual pages of this catalog – especially with regard to data, dimensions and weights given – these are subject to change without prior notice.

4. Export regulations

We shall not be obligated to fulfill this agreement if such fulfillment is prevented by any impediments arising out of national or international foreign trade or customs requirements or any embargoes or other sanctions.

Export of goods listed in this catalog may be subject to license. We shall indicate in the delivery details whether licenses are required under German, European and US export lists. Goods labeled with "AL" not equal to "N" are subject to European or German export authorization when being exported out of the EU. Goods labeled with "ECCN" not equal to "N" are subject to US re-export authorization.

The export label can be viewed in advance in the description of the respective goods on the Industry Mall, our online catalog system. The deciding factors are the export label "AL" or "ECCN" indicated on order confirmations, delivery notes and invoices.

Even without a label, or with label "AL:N" or "ECCN:N", authorization may be required due to the final whereabouts and purpose for which the goods are to be used.

If you transfer goods (hardware and/or software and/or technology as well as corresponding documentation, regardless of the mode of provision) delivered by us or works and services (including all kinds of technical support) performed by us to a third party worldwide, you must comply with all applicable national and international (re-)export control regulations.

If required for the purpose of conducting export control checks, you (upon request by us) must promptly provide us with all information pertaining to the particular end customer, destination and intended use of goods, works and services provided by us, as well as to any export control restrictions existing.

The products listed in this catalog may be subject to European/German and/or US export regulations. Any export requiring approval is therefore subject to authorization by the relevant authorities.

Errors excepted and subject to change without prior notice.

 The text of the Comprehensive Terms and Conditions of Sale and Delivery can be downloaded at www.siemens.com/automation/salesmaterial-as/catalog/de/ terms_of_trade_de.pdf

Catalogs Industry Automation, Drive Technologies and Low-Voltage Power Distribution

Further information can be obtained from our branch offices listed in the appendix or at www.siemens.com/automation/partner

Interactive Catalog on DVD for Industry Automation, Drive Technologies and	Catalog CA 01
Low Voltage Distribution	
Drive Systems	
Variable-Speed Drives	5
SINAMICS G130 Drive Converter Chassis Units SINAMICS G150 Drive Converter Cabinet Units	D 11
SINAMICS GM150, SINAMICS SM150	D 12
Medium-Voltage Converters	
ROBICON Perfect Harmony	D 15.1
Medium-Voltage Air-Cooled Drives Germany Edition	
SINAMICS S120 Chassis Format Units and	D 21.3
Cabinet Modules	
SINAMICS S150 Converter Cabinet Units	D 00 1
SINAMICS DCM Converter Units	D 23.1
SINAMICS and Motors for Single-Axis Drives	D 31
Three-phase Induction Motors H-compact	D 84.1
H-compact PLUS	
Asynchronous Motors Standardline	D 86.1
Synchronous Motors with Permanent-Magnet	D 86.2
Technology, HT-direct DC Motors	
SIMOREG DC MASTER 6RA70 Digital Chassis	DA 12 DA 21.1
Converters	DREIT
SIMOREG K 6RA22 Analog Chassis Converters	DA 21.2
PDF: SIMOREG DC MASTER 6RM70 Digital Converter Cabinet Units	DA 22
SIMOVERT PM Modular Converter Systems	DA 45
SIEMOSYN Motors	DA 48
MICROMASTER 420/430/440 Inverters	DA 51.2
MICROMASTER 411/COMBIMASTER 411	DA 51.3
SIMOVERT MASTERDRIVES Vector Control	DA 65.10
SIMOVERT MASTERDRIVES Motion Control Synchronous and asynchronous servomotors for	DA 65.1 ⁻ DA 65.3
SIMOVERT MASTERDRIVES	DA 05.5
SIMODRIVE 611 universal and POSMO	DA 65.4
SIMOTION, SINAMICS S120 and	PM 21
Motors for Production Machines	
SINUMERIK, SIMODRIVE and Motors for Machine Tools	NC 60
SINUMERIK, SINAMICS S120 and	NC 61
Motors for Machine Tools	
Low-Voltage Three-Phase-Motors	
SIMOTICS Low-Voltage Motors	D 81.1
MOTOX Geared Motors	D 87.1
SIMOGEAR Geared Motors	MD 50.1
Mechanical Driving Machines	
FLENDER Standard Couplings FLENDER SIG Standard industrial gear unit	MD 10.1 MD 30.1
FLENDER SIG Standard industrial gear units	MD 30.1 MD 31.1
Low-Voltage Power Distribution and Electrical Installation Technology	
SENTRON Protection, Switching, Measuring and	LV 10.1
Monitoring Devices	11/10 5
SIVACON · ALPHA Switchboards and Distribution	LV 10.2

Monitoring Devices	
SIVACON · ALPHA Switchboards and Distribution	LV 10.2
Systems	
SIVACON 8PS Busbar Trunking Systems	LV 70
GAMMA Building Control	ET G1
PDF: DELTA Switches and Socket Outlets	ET D1

Motion ControlSINAMICS and Motors for Single-Axis DrivesSINUMERIK & SIMODRIVEAutomation Systems for Machine ToolsSINUMERIK & SINAMICSEquipment for Machine ToolsSINUMERIK & SINAMICSEquipment for Machine ToolsSINUMERIK & 08D, SINAMICS V60 and G120and SIMOTICS 1FL5 and 1LE1 motorsSINUMERIK 828D BASIC T/BASIC M,SINUMERIK 828D BASIC T/BASIC M,SINAMICS S120 Combi and 1FK7/1PH8 motorsSIMOTION, SINAMICS S120 andMotors for Production MachinesDrive and Control Components for CranesPower Supply and System CablingPower supply SITOPSystem cabling SIMATIC TOP connectProcess Instrumentation and AnalyticsField Instruments for Process AutomationSIREC Recorders and AccessoriesSIPART, Controllers and SoftwareProducts for Weighing TechnologyPDF: Process Analytical InstrumentsPDF: Process Analytics, Components for the System IntegrationSafety IntegratedSafety Technology for Factory Automation	Catalog D 31 NC 60 NC 61 NC 81.1 NC 82 PM 21 CR 1 KT 10.1 KT 10.2
SINAMICS and Motors for Single-Axis Drives SINUMERIK & SIMODRIVE Automation Systems for Machine Tools SINUMERIK & SINAMICS Equipment for Machine Tools SINUMERIK 808D, SINAMICS V60 and G120 and SIMOTICS 1FL5 and 1LE1 motors SINUMERIK 828D BASIC T/BASIC M, SINAMICS S120 Combi and 1FK7/1PH8 motors SIMOTION, SINAMICS S120 and Motors for Production Machines Drive and Control Components for Cranes Power Supply and System Cabling Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	D 31 NC 60 NC 61 NC 81.1 NC 82 PM 21 CR 1 KT 10.1
SINUMERIK & SIMODRIVE Automation Systems for Machine Tools SINUMERIK & SINAMICS Equipment for Machine Tools SINUMERIK 808D, SINAMICS V60 and G120 and SIMOTICS 1FL5 and 1LE1 motors SINUMERIK 828D BASIC T/BASIC M, SINAMICS S120 Combi and 1FK7/1PH8 motors SIMOTION, SINAMICS S120 and Motors for Production Machines Drive and Control Components for Cranes Power Supply and System Cabling Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology <i>PDF: Process Analytical Instruments</i> <i>PDF: Process Analytics, Components for the System Integration</i> Safety Integrated	NC 60 NC 61 NC 81.1 NC 82 PM 21 CR 1 KT 10.1
Automation Systems for Machine Tools SINUMERIK & SINAMICS Equipment for Machine Tools SINUMERIK 808D, SINAMICS V60 and G120 and SIMOTICS 1FL5 and 1LE1 motors SINUMERIK 828D BASIC T/BASIC M, SINAMICS S120 Combi and 1FK7/1PH8 motors SIMOTION, SINAMICS S120 and Motors for Production Machines Drive and Control Components for Cranes Power Supply and System Cabling Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	NC 61 NC 81.1 NC 82 PM 21 CR 1 KT 10.1
SINUMERIK & SINAMICS Equipment for Machine Tools SINUMERIK 808D, SINAMICS V60 and G120 and SIMOTICS 1FL5 and 1LE1 motors SINUMERIK 828D BASIC T/BASIC M, SINAMICS S120 Combi and 1FK7/1PH8 motors SIMOTION, SINAMICS S120 and Motors for Production Machines Drive and Control Components for Cranes Power Supply and System Cabling Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology <i>PDF: Process Analytical Instruments</i> <i>PDF: Process Analytics, Components for the System Integration</i> Safety Integrated	NC 81.1 NC 82 PM 21 CR 1 KT 10.1
Equipment for Machine Tools SINUMERIK 808D, SINAMICS V60 and G120 and SIMOTICS 1FL5 and 1LE1 motors SINUMERIK 828D BASIC T/BASIC M, SINAMICS S120 Combi and 1FK7/1PH8 motors SIMOTION, SINAMICS S120 and Motors for Production Machines Drive and Control Components for Cranes Power Supply and System Cabling Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology <i>PDF: Process Analytical Instruments</i> <i>PDF: Process Analytics,</i> <i>Components for the System Integration</i> Safety Integrated	NC 81.1 NC 82 PM 21 CR 1 KT 10.1
Equipment for Machine Tools SINUMERIK 808D, SINAMICS V60 and G120 and SIMOTICS 1FL5 and 1LE1 motors SINUMERIK 828D BASIC T/BASIC M, SINAMICS S120 Combi and 1FK7/1PH8 motors SIMOTION, SINAMICS S120 and Motors for Production Machines Drive and Control Components for Cranes Power Supply and System Cabling Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	NC 81.1 NC 82 PM 21 CR 1 KT 10.1
SINUMERIK 808D, SINAMICS V60 and G120 and SIMOTICS 1FL5 and 1LE1 motors SINUMERIK 828D BASIC T/BASIC M, SINAMICS S120 Combi and 1FK7/1PH8 motors SIMOTION, SINAMICS S120 and Motors for Production Machines Drive and Control Components for Cranes Power Supply and System Cabling Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	NC 82 PM 21 CR 1 KT 10.1
and SIMOTICS 1FL5 and 1LE1 motors SINUMERIK 828D BASIC T/BASIC M, SINAMICS S120 Combi and 1FK7/1PH8 motors SIMOTION, SINAMICS S120 and Motors for Production Machines Drive and Control Components for Cranes Power Supply and System Cabling Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology <i>PDF: Process Analytical Instruments</i> <i>PDF: Process Analytics, Components for the System Integration</i> Safety Integrated	NC 82 PM 21 CR 1 KT 10.1
SINUMERIK 828D BASIC T/BASIC M, SINAMICS S120 Combi and 1FK7/1PH8 motors SIMOTION, SINAMICS S120 and Motors for Production Machines Drive and Control Components for Cranes Power Supply and System Cabling Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology <i>PDF: Process Analytics,</i> <i>Components for the System Integration</i> Safety Integrated	PM 21 CR 1 KT 10.1
SINAMICS S120 Combi and 1FK7/1PH8 motors SIMOTION, SINAMICS S120 and Motors for Production Machines Drive and Control Components for Cranes Power Supply and System Cabling Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology <i>PDF: Process Analytical Instruments</i> <i>PDF: Process Analytics,</i> <i>Components for the System Integration</i> Safety Integrated	PM 21 CR 1 KT 10.1
SIMOTION, SINAMICS S120 and Motors for Production Machines Drive and Control Components for Cranes Power Supply and System Cabling Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	CR 1 KT 10.1
Motors for Production Machines Drive and Control Components for Cranes Power Supply and System Cabling Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	CR 1 KT 10.1
Drive and Control Components for Cranes Power Supply and System Cabling Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	KT 10.1
Power Supply and System Cabling Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	KT 10.1
Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	
Power supply SITOP System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	
System cabling SIMATIC TOP connect Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	
Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	KT 10.2
Process Instrumentation and Analytics Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	
Field Instruments for Process Automation SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	
SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	
SIREC Recorders and Accessories SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	FI 01
SIPART, Controllers and Software Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	MP 20
Products for Weighing Technology PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	
PDF: Process Analytical Instruments PDF: Process Analytics, Components for the System Integration Safety Integrated	MP 31
PDF: Process Analytics, Components for the System Integration Safety Integrated	WT 10
PDF: Process Analytics, Components for the System Integration Safety Integrated	PA 01
Components for the System Integration Safety Integrated	PA 11
	14.11
Safety lechnology for Factory Automation	01.40
	SI 10
SIMATIC HMI/PC-based Automation	
Human Machine Interface Systems/	ST 80/
PC-based Automation	ST PC
	0110
SIMATIC Ident	
Industrial Identification Systems	ID 10
	10 10
SIMATIC Industrial Automation Systems	
Products for Totally Integrated Automation and	ST 70
Micro Automation	-
SIMATIC PCS 7 Process Control System	ST PCS 7
2	
Add-ons for the SIMATIC PCS 7	ST PCS 7.
Process Control System	
PDF: Migration solutions with the SIMATIC PCS 7 Process Control System	ST PCS 7
SIMATIC NET	
Industrial Communication	IK PI
SINVERT Photovoltaics	
Inverters and Components for Photovoltaic Installations	RE 10
SIRIUS Industrial Controls	
SIRIUS Industrial Controls	10 10
SIRIUS Industrial Controls	IC 10
(selected content from catalog IC 10)	IC 10 IC 90

Applications and Products for Industry are part of the interactive catalog CA 01

Information and Download Center

PDF versions of the catalogs are available on the Internet at: www.siemens.com/drives/infocenter

© Siemens AG 2012

Siemens Industriegetriebe GmbH Thierbacher Str. 24 09322 PENIG GERMANY Subject to change without prior notice Order No. E86060-K5731-A111-A3-7600 MP.R2.PE.MD3B.31.2.01 / Dispo 18407 KG 0912 3.0 AUM / HO 64 En Printed in Germany © Siemens AG 2012 The information provided in this catalog contains descriptions or characteristics of performance which in case of actual use do not always apply as described or which may change as a result of further development of the products. An obligation to provide the respective characteristics shall only exist if expressly agreed in the terms of contract. Availability and technical specifications are subject to change without notice.

All product designations may be trademarks or product names of Siemens AG or supplier companies whose use by third parties for their own purposes could violate the rights of the owners.

www.siemens.com/sip